Answer:
-3x²-5xeˣ-eˣ
-3eˣx²-11eˣx-6eˣ
Step-by-step explanation:
I'm going to go by the picture and not what you wrote in your title.
To find the derivative of this we have to apply the product rule
(a*b)'=
a'*b+a*b'
We plug in our numbers and get
(-3x²+x-2)'*eˣ+(-3x²+x-2)*eˣ'
Now we can evaluate the derivatives and simplify
(-3x²+x-2)'= -6x+1
eˣ'=eˣ
which means we have
(-6x+1)*eˣ+(-3x²+x-2)*eˣ
Simplify
-6xeˣ+eˣ-3x²eˣ+xeˣ-2eˣ
Combine like terms
-3x²eˣ-5xeˣ-eˣ
Now we just need to find the derivative of this
We can apply the same product rule as we did before
(-3x²eˣ)'
Let's start by factoring out the -3 to get
-3(x²eˣ)'
which is equal to
-3(x²eˣ'+x²'eˣ)
Compute this and get
-3(x²eˣ+2xeˣ)= -3x²eˣ-6xeˣ
Now let's find the derivative of the second part
(-5xeˣ)'
-5(x'eˣ+xeˣ')
-5(eˣ+xeˣ)
-5eˣ-5xeˣ
Which means we have
(-3x²eˣ-6xeˣ)+(-5eˣ-5xeˣ)-eˣ
Combine like terms and get
-3eˣx²-11eˣx-6eˣ
Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
<h3>
Inscribing a square</h3>
The steps involved in inscribing a square in a circle include;
- A diameter of the circle is drawn.
- A perpendicular bisector of the diameter is drawn using the method described as the perpendicular of the line sector. Also known as the diameter of the circle.
- The resulting four points on the circle are the vertices of the inscribed square.
Alicia deductions were;
Draws two diameters and connects the points where the diameters intersect the circle, in order, around the circle
Benjamin's deductions;
The diameters must be perpendicular to each other. Then connect the points, in order, around the circle
Caleb's deduction;
No need to draw the second diameter. A triangle when inscribed in a semicircle is a right triangle, forms semicircles, one in each semicircle. Together the two triangles will make a square.
It can be concluded from their different postulations that Benjamin is correct because the diameter must be perpendicular to each other and the points connected around the circle to form a square.
Thus, Benjamin is correct about the diameter being perpendicular to each other and the points connected around the circle.
Learn more about an inscribed square here:
brainly.com/question/2458205
#SPJ1
Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°
Answer:
longest length minus the shortest
Step-by-step explanation:
The answer is 54 pi in^3. All you have to do is multiply 3x3, then multiply that by 6 and you get the answer 54.