Answer:
C. 46 degrees
Step-by-step explanation:
In a rotation all angles and side lengths are preserved so the angle measure will be the same in both the image and pre-image.
The parent function is:
y = x ^ 2
Applying the following function transformation we have:
Horizontal translations:
Suppose that h> 0
To graph y = f (x-h), move the graph of h units to the right.
We have then:
g (x) = (x-2) ^ 2
Then, we have the following function transformation:
Vertical translations
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
We have then that the original function is:
g (x) = (x-2) ^ 2
Applying the transformation we have
f (x) = g (x) +3
f (x) = (x-2) ^ 2 + 3
Answer:
the function f(x) moves horizontally 2 units rigth.
The function f (x) is shifted vertically 3 units up.
Dividing the given polynomial by (x -6) gives quotient Q(x) and remainder 5 then for Q(-6) = 3 , P(-6) = -31and P(6) =5.
As given in the question,
P(x) be the given polynomial
Dividing P(x) by divisor (x-6) we get,
Quotient = Q(x)
Remainder = 5
Relation between polynomial, divisor, quotient and remainder is given by :
P(x) = Q(x)(x-6) + 5 __(1)
Given Q(-6) = 3
Put x =-6 we get,
P(-6) = Q(-6)(-6-6) +5
⇒ P(-6) = 3(-12) +5
⇒ P(-6) =-36 +5
⇒ P(-6) = -31
Now x =6 in (1),
P(6) = Q(6)(6-6) +5
⇒ P(6) = Q(6)(0) +5
⇒ P(6) = 5
Therefore, dividing the given polynomial by (x -6) gives quotient Q(x) and remainder 5 then for Q(-6) = 3 , P(-6) = -31and P(6) =5.
The complete question is:
Dividing the polynomial P(x) by x - 6 yields a quotient Q(x) and a remainder of 5. If Q(-6) = 3, find P(-6) and P(6).
Learn more about polynomial here
brainly.com/question/11536910
#SPJ1