The sides of the triangle are given as 1, x, and x².
The principle of triangle inequality requires that the sum of the lengths of any two sides should be equal to, or greater than the third side.
Consider 3 cases
Case (a): x < 1,
Then in decreasing size, the lengths are 1, x, and x².
We require that x² + x ≥ 1
Solve x² + x - 1 =
x = 0.5[-1 +/- √(1+4)] = 0.618 or -1.618.
Reject the negative length.
Therefore, the lengths are 0.382, 0.618 and 1.
Case (b): x = 1
This creates an equilateral triangle with equal sides
The sides are 1, 1 and 1.
Case (c): x>1
In increasing order, the lengths are 1, x, and x².
We require that x + 1 ≥ x²
Solve x² - x - 1 = 0
x = 0.5[1 +/- √(1+4)] = 1.6118 or -0.618
Reject the negative answr.
The lengths are 1, 1.618 and 2.618.
Answer:
The possible lengths of the sides are
(a) 0.382, 0.618 and 1
(b) 1, 1 and 1.
(c) 2.618, 1.618 and 1.
Sin = surd 3 / 2
get it????
Answer:
2.2894
Step-by-step explanation:
v3 = 12
v = ∛ 12
v = 2.2894
The inclusion/exclusion principle states that

That is, the union has as many members as the sum of the number of members of the individual sets, minus the number of elements contained in both sets (to avoid double-counting).
Therefore,

will have the most elements when the sets

and

are disjoint, i.e.

, which would mean the most we can can in this case would be

(Note that

denotes the cardinality of the set

.)
Answer:
The way a proportion is set is as follows;

The Distance from Rio de Janeiro and San Jose Costa Rica is then found as 800 miles
Step-by-step explanation:
The dimension of the distance between Rio de Janeiro and San Jose Costa Rica = 4 inches
The map scale = 1 inch to 200 miles
To figure out how many miles it is or the actual distance from Rio de Janeiro and San Jose Costa Rica, we have;

Therefore, we have;
(4 inches × 200 miles)/(1 inche) = Distance from Rio de Janeiro and San Jose Costa Rica
Which gives;
Distance from Rio de Janeiro and San Jose Costa Rica = 800 miles.