X² + 11x + 28 + x² + 13x + 40
combine like terms
x² + x² = 2x²
11x + 13x = 24x
28 + 40 = 68
2x² + 24x + 68 is your answer
if you want it simplified:
2(x² + 12x + 34)
hope this helps
She used the diameter instead of the radius :) instead of cubing 8 she should’ve cubed 4
Answer:
Step-by-step explanation:
so i think if you land on heads it is more like a 70% chance of getting heads but then again it could be a 30% chance that you land on tails so if you land on head you get the Alsatian and tails you get a bulldog i hope you get the correct answer good luck
Answer:
a) 95% of the widget weights lie between 29 and 57 ounces.
b) What percentage of the widget weights lie between 12 and 57 ounces? about 97.5%
c) What percentage of the widget weights lie above 30? about 97.5%
Step-by-step explanation:
The empirical rule for a mean of 43 and a standard deviation of 7 is shown below.
a) 29 represents two standard deviations below the mean, and 57 represents two standard deviations above the mean, so, 95% of the widget weights lie between 29 and 57 ounces.
b) 22 represents three standard deviations below the mean, and the percentage of the widget weights below 22 is only 0.15%. We can say that the percentage of widget weights below 12 is about 0. Equivalently we can say that the percentage of widget weights between 12 an 43 is about 50% and the percentage of widget weights between 43 and 57 is 47.5%. Therefore, the percentage of the widget weights that lie between 12 and 57 ounces is about 97.5%
c) The percentage of widget weights that lie above 29 is 47.5% + 50% = 97.5%. We can consider that the percentage of the widget weights that lie above 30 is about 97.5%
The probability of event A and B to both occur is denoted as P(A ∩ B) = P(A) P(B|A). It is the probability that Event A occurs times the probability that Event B occurs, given that Event A has occurred.
So, to find the probability that you will be assigned a poem by Shakespeare and by Tennyson, let Event A = the event that a Shakespeare poem will be assigned to you; and let Event B = the event that the second poem that will be assigned to you will be by Tennyson.
At first, there are a total of 13 poems that would be randomly assigned in your class. There are 4 poems by Shakespeare, thus P(A) is 4/13.
After the first selection, there would be 13 poems left. Therefore, P(B|A) = 2/12
Based on the rule of multiplication,
P(A ∩ B) = P(A) P(B|A)P(A ∩ B) = 4/13 * 2/12
P(A ∩ B) = 8/156
P(A ∩ B) = 2/39
The probability that you will be assigned a poem by Shakespeare, then a poem by Tennyson is 2/39 or 5.13%.