Answer: 21 . . . . . .
Credit to the person below-
What exactly was the purpose of posting this?
Answer:
-2(2x-1)
Step-by-step explanation:
x+4-5x-2
1) collect like like terms
-4x+2
2) factor out the -2
-2(2x-1)
3) that gives you the final answer of
-2(2x-1)
X=2→F(2)=[(2)^3+3]/[(2)^2-5]
F(2)=(8+3)/(4-5)
F(2)=11/(-1)
F(2)=-11
-2/F(2)=-2/(-11)
-2/F(2)=2/11
Answer: 2/11
Answer:convergent
Step-by-step explanation:
Given
Improper Integral I is given as


integration of
is 
![I=1000\times \left [ e^x\right ]^{0}_{-\infty}](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20%5Cleft%20%5B%20e%5Ex%5Cright%20%5D%5E%7B0%7D_%7B-%5Cinfty%7D)
![I=1000\times I=\left [ e^0-e^{-\infty}\right ]](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20I%3D%5Cleft%20%5B%20e%5E0-e%5E%7B-%5Cinfty%7D%5Cright%20%5D)
![I=1000\times \left [ e^0-\frac{1}{e^{\infty}}\right ]](https://tex.z-dn.net/?f=I%3D1000%5Ctimes%20%5Cleft%20%5B%20e%5E0-%5Cfrac%7B1%7D%7Be%5E%7B%5Cinfty%7D%7D%5Cright%20%5D)

so the integration converges to 1000 units