Answer:
The members of the cabinet can be appointed in 121,080,960 different ways.
Step-by-step explanation:
The rank is important(matters), which means that the order in which the candidates are chosen is important. That is, if we exchange the position of two candidates, it is a new outcome. So we use the permutations formula to solve this quesiton.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:

If there are 14 eligible candidates for these positions (where rank matters), how many different ways can the members of the cabinet be appointed?
Permutations of 8 from a set of 14. So

The members of the cabinet can be appointed in 121,080,960 different ways.
Gfryudsgjxeujhhhdsethjhyui
Answer:
Answer is C.Whole number.
Step-by-step explanation:
Natural numbers are all numbers 1, 2, 3, 4… They are the numbers you usually count and they will continue on into infinity. Whole numbers are all natural numbers including 0 e.g. 0, 1, 2, 3, 4… Integers include all whole numbers and their negative counterpart e.g. …
I hope it's helpful!
The function "choose k from n", nCk, is defined as
nCk = n!/(k!*(n-k)!) . . . . . where "!" indicates the factorial
a) No position sensitivity.
The number of possibilities is the number of ways you can choose 5 players from a roster of 12.
12C5 = 12*11*10*9*8/(5*4*3*2*1) = 792
You can put 792 different teams on the floor.
b) 1 of 2 centers, 2 of 5 guards, 2 of 5 forwards.
The number of possibilities is the product of the number of ways, for each position, you can choose the required number of players from those capable of playing the position.
(2C1)*(5C2)*(5C2) = 2*10*10 = 200
You can put 200 different teams on the floor.