Answer:
upper bound for the error, | Error | ≤ 0.0032
Step-by-step explanation:
Given the data in the question;
< e < 3
Using Taylor's Error bound formula
| Error | ≤ ( m / ( N + 1 )! ) 
where m = 
so we have
| Error | ≤ ( 3 / ( 3 + 1 )! )
-0.4
⁴
| Error | ≤ ( 3 / 4! )
-0.4
⁴
| Error | ≤ ( 3 / 24 )
-0.4
⁴
| Error | ≤ ( 0.125 )
-0.0256 
| Error | ≤ ( 0.125 ) 0.0256
| Error | ≤ 0.0032
Therefore, upper bound for the error, | Error | ≤ 0.0032