<h3>
Answer: 116.2°</h3>
Work Shown:
![c^2 = a^2 + b^2 - 2ab\cos(C)\\\\55^2 = 24^2 + 40^2 - 2*24*40\cos(C)\\\\3025 = 576 + 1600 - 1920\cos(C)\\\\3025 = 2176 - 1920\cos(C)\\\\3025 - 2176 = -1920\cos(C)\\\\849 = -1920\cos(C)\\\\-1920\cos(C) = 849\\\\\cos(C) = (849)/(-1920)\\\\\cos(C) \approx -0.4421875\\\\C \approx \cos^{-1}(-0.4421875)\\\\C \approx 116.243535748231^{\circ}\\\\C \approx 116.2^{\circ}\\\\](https://tex.z-dn.net/?f=c%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20-%202ab%5Ccos%28C%29%5C%5C%5C%5C55%5E2%20%3D%2024%5E2%20%2B%2040%5E2%20-%202%2A24%2A40%5Ccos%28C%29%5C%5C%5C%5C3025%20%3D%20576%20%2B%201600%20-%201920%5Ccos%28C%29%5C%5C%5C%5C3025%20%3D%202176%20-%201920%5Ccos%28C%29%5C%5C%5C%5C3025%20-%202176%20%20%3D%20-1920%5Ccos%28C%29%5C%5C%5C%5C849%20%20%3D%20-1920%5Ccos%28C%29%5C%5C%5C%5C-1920%5Ccos%28C%29%20%3D%20849%5C%5C%5C%5C%5Ccos%28C%29%20%3D%20%28849%29%2F%28-1920%29%5C%5C%5C%5C%5Ccos%28C%29%20%5Capprox%20-0.4421875%5C%5C%5C%5CC%20%5Capprox%20%5Ccos%5E%7B-1%7D%28-0.4421875%29%5C%5C%5C%5CC%20%5Capprox%20116.243535748231%5E%7B%5Ccirc%7D%5C%5C%5C%5CC%20%5Capprox%20116.2%5E%7B%5Ccirc%7D%5C%5C%5C%5C)
The first equation is one of the three variations for the Law of Cosines.
Make sure your calculator is in degree mode.
Answer:
I am so confused I give up
Step-by-step explanation:
(10x+5)*(9x-2)
90x^2-20x+45x-10
90x^2+25x-10
-1/2 I think is the slope
The arc length of AB is 8 m (app.)
Explanation:
Given that the radius of the circle is 8 m.
The central angle is 60°
We need to determine the arc length of AB
The arc length of AB can be determined using the formula,
![arc \ length=\frac{central \ angle}{360^{\circ}} \times circumference](https://tex.z-dn.net/?f=arc%20%5C%20length%3D%5Cfrac%7Bcentral%20%5C%20angle%7D%7B360%5E%7B%5Ccirc%7D%7D%20%5Ctimes%20circumference)
Substituting central angle = 60° and circumference = 2πr in the above formula, we get,
![arc \ length=\frac{60^{\circ}}{360^{\circ}} \times 2 \pi(8)](https://tex.z-dn.net/?f=arc%20%5C%20length%3D%5Cfrac%7B60%5E%7B%5Ccirc%7D%7D%7B360%5E%7B%5Ccirc%7D%7D%20%5Ctimes%202%20%5Cpi%288%29)
Simplifying the terms, we get,
![arc \ length=\frac{8 \pi }{3}](https://tex.z-dn.net/?f=arc%20%5C%20length%3D%5Cfrac%7B8%20%5Cpi%20%7D%7B3%7D)
Dividing, we get,
![arc \ length=8(app.)](https://tex.z-dn.net/?f=arc%20%5C%20length%3D8%28app.%29)
Hence, the arc length is approximately equal to 8.
Therefore, the arc length of AB is 8 m