Answer:
um well i can do part A
Step-by-step explanation:
its 6/24 which equals 1/4 yards
It is a bit tedious to write 6 equations, but it is a straightforward process to substitute the given point values into the form provided.
For segment ab. (x1, y1) = (1, 1); (x2, y2) = (3, 4).
... x = 1 + t(3-1)
... y = 1 + t(4-1)
ab = {x=1+2t, y=1+3t}
For segment bc. (x1, y1) = (3, 4); (x2, y2) = (1, 7).
... x = 3 + t(1-3)
... y = 4 + t(7-4)
bc = {x=3-2t, y=4+3t}
For segment ca. (x1, y1) = (1, 7); (x2, y2) = (1, 1).
... x = 1 + t(1-1)
... y = 7 + t(1-7)
ca = {x=1, y=7-6t}
Answer:
Analysis of variance (ANOVA) is the most accurate to estimate the difference
Step-by-step explanation:
Analysis of variance (ANOVA) is the best statistical method that can be used to determine the systematic difference between the mean values of two given set of population in any random experiment
In this case the two set of populations would be the one in which temperature is measured by thermometers on ground and sensor mounted in a space satellite.
X = 45.
Since opposite exterior angles are congruent, you can set the 2 values equal to each other. When you solve for x, you should get 45.
Given that for each <span>$2 increase in price, the demand is less and 4 fewer cars are rented.
Let x be the number of $2 increases in price, then the revenue from renting cars is given by

.
Also, given that f</span><span>or each car that is rented, there are routine maintenance costs of $5 per day, then the total cost of renting cars is given by

Profit is given by revenue - cost.
Thus, the profit from renting cars is given by
</span><span>

For maximum profit, the differentiation of the profit function equals zero.
i.e.
</span><span>

The price of renting a car is given by 48 + 2x = 48 + 2(8) = 48 + 16 = 64.
Therefore, the </span><span>rental charge will maximize profit is $64.</span>