1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ahat [919]
3 years ago
14

Help me fast

Mathematics
1 answer:
Dmitry [639]3 years ago
7 0
Y= x2+2 is the correct answer
You might be interested in
Given an equation x3 - 8x2 - 9x + 72 = 0, find the zeros.
sveta [45]

Answer:

= 28/3

Step-by-step explanation:

Let's solve your equation step-by-step.

x(3)−(8)(2)−9x+72=0

Step 1: Simplify both sides of the equation.

x(3)−(8)(2)−9x+72=0

3x+−16+−9x+72=0

(3x+−9x)+(−16+72)=0(Combine Like Terms)

−6x+56=0

−6x+56=0

Step 2: Subtract 56 from both sides.

−6x+56−56=0−56

−6x=−56

Step 3: Divide both sides by -6.

−6x

−6

=

−56

−6

x=

28

3

Answer:

x=

28

3

7 0
3 years ago
Y = x + 2y = -2x + 2y = -3x + 2y = -5x + 2y = -
djverab [1.8K]

Answer:

152

Step-by-step explanation:

jtg djkgkjh uy eo y3oi4yio23 jdoie oi4h io

6 0
3 years ago
A = 9 m, b = 4 m and c = 13 m for the triangle shown below.
maw [93]
The answer is 9 shown below a b c triangle shown below ⬇️
7 0
2 years ago
Linear or non-linear?​
Gnoma [55]

Answer:

the answer for this question is non-linear

Step-by-step explanation:

linear means in a <u><em>straight</em></u> line. the question you wrote is <u>NOT</u> in a strait line.

hoped the answer helped

7 0
3 years ago
2 tan 30°<br>II<br>1 + tan- 300​
shusha [124]

Question:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}

Answer:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= sin(60^{\circ})

Step-by-step explanation:

Given

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}

Required

Simplify

In trigonometry:

tan(30^{\circ}) = \frac{1}{\sqrt{3}}

So, the expression becomes:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2 * \frac{1}{\sqrt{3}}}{1 + (\frac{1}{\sqrt{3}})^2}

Simplify the denominator

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2 * \frac{1}{\sqrt{3}}}{1 + \frac{1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{1 + \frac{1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{ \frac{3+1}{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\frac{2}{\sqrt{3}}}{ \frac{4}{3}}

Express the fraction as:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= \frac{2}{\sqrt 3} / \frac{4}{3}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{2}{\sqrt 3} * \frac{3}{4}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{1}{\sqrt 3} * \frac{3}{2}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3}{2\sqrt 3}

Rationalize

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3}{2\sqrt 3} * \frac{\sqrt{3}}{\sqrt{3}}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{3\sqrt{3}}{2* 3}

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})} = \frac{\sqrt{3}}{2}

In trigonometry:

sin(60^{\circ}) =  \frac{\sqrt{3}}{2}

Hence:

\frac{2tan30^{\circ}}{1 + tan^2(30^{\circ})}= sin(60^{\circ})

3 0
3 years ago
Other questions:
  • 5/4x + 2/x +3<br> algebra 2
    6·1 answer
  • Mrs. Acquino cuts 1 2 of a piece of construction paper. She uses 1 5 of the piece to make a flower. What fraction of the sheet o
    11·1 answer
  • 3[ (5)/(-9) (6)/(-2)]-2[(0)/(-2)(2)/(-4)]
    11·2 answers
  • E^-2x×(2x – 1)^5 how to derive this plz help​
    7·1 answer
  • Please help
    7·1 answer
  • A line passes through points (0,k) and (2,0) and has a slope of -1.5.
    10·1 answer
  • A chef cooked 7 kilograms if the guests only ate 3 quaters of the amount he cooked how much did they eat
    13·1 answer
  • Rick's cat weighs 7 pounds. His neighbor says her puppy weighs 103 ounces.
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Chuge%20%5Cdag%20%5Csf%7BAnswer%20%5C%3A%20it%7D" id="TexFormula1" title="\huge \dag \sf{Ans
    15·1 answer
  • HELP PLEASE AND SHOW WORK​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!