Answer:
D is a perfect square
Step-by-step explanation:
a perfect square is a squared number that has a square root of an even number like sqrt(64) = 8 and 8 is an even number making it a perfect square
Answer:
Answer:
Step-by-step explanation:
1) One solution is to write, as our exponent:
2) Because this is special case of the Exponents Law, valid for every base ≠ 0.
3) Hence, including an exponent the numbers 6, 2 whose value is eight.
Therefore our expression is true
Step-by-step explanation:
Answer:
Step-by-step explanation:
1. Convert mixed number to improper fraction and divide.
2. Use a calculator.
Answer:
(a) x = -2y
(c) 3x - 2y = 0
Step-by-step explanation:
You can tell if an equation is a direct variation equation if it can be written in the format y = kx.
Note that there is no addition and subtraction in this equation.
Let's put these equations in the form y = kx.
(a) x = -2y
- y = x/-2 → y = -1/2x
- This is equivalent to multiplying x by -1/2, so this is an example of direct variation.
(b) x + 2y = 12
- 2y = 12 - x
- y = 6 - 1/2x
- This is not in the form y = kx since we are adding 6 to -1/2x. Therefore, this is <u>NOT</u> an example of direct variation.
(c) 3x - 2y = 0
- -2y = -3x
- y = 3/2x
- This follows the format of y = kx, so it is an example of direct variation.
(d) 5x² + y = 0
- y = -5x²
- This is not in the form of y = kx, so it is <u>NOT</u> an example of direct variation.
(e) y = 0.3x + 1.6
- 1.6 is being added to 0.3x, so it is <u>NOT</u> an example of direct variation.
(f) y - 2 = x
- y = x + 2
- 2 is being added to x, so it is <u>NOT</u> an example of direct variation.
The following equations are examples of direct variation: