-2x+9. just distribute a -1
The given system of equations in augmented matrix form is
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\-6&1&2&4&-12\\1&-3&-3&5&-20\\-2&5&6&0&12\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C-6%261%262%264%26-12%5C%5C1%26-3%26-3%265%26-20%5C%5C-2%265%266%260%2612%5Cend%7Barray%7D%5Cright%5D)
If you need to solve this, first get the matrix in RREF:
- Add 2(row 1) to row 2, row 1 to -3(row 3), and 2(row 1) to 3(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&11&5&-13&37\\0&19&10&4&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%2611%265%26-13%2637%5C%5C0%2619%2610%264%26-10%5Cend%7Barray%7D%5Cright%5D)
- Add 11(row 2) to -5(row 3), and 19(row 1) to -5(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&-164&132&-1052\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%26-164%26132%26-1052%5Cend%7Barray%7D%5Cright%5D)
- Add 164(row 3) to -91(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&13080&-39240\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%2613080%26-39240%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 4 by 1/13080:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -153(row 4) to row 3:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&0&-364\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%260%26-364%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add 6(row 3) and -8(row 4) to row 2:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&0&0&-10\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%260%260%26-10%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -2(row 2), 4(row 3), and -2(row 4) to row 1:
![\left[\begin{array}{cccc|c}3&0&0&0&3\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%260%260%260%263%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}1&0&0&0&1\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D1%260%260%260%261%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
So the solution to this system is
.
Answer:
x = 10
y = 3
Step-by-step explanation:
Given
2x - 6y = 2
x + 6y = 28
Add both equations
2x + x -6y + 6y = 2 + 28
3x = 30
Divide both sides by 3
x = 30/3
x = 10
Substitute 10 for x in either equations to get y
Using equation 2 , we have
x + 6y = 28
10 + 6y = 28
Subtract 10 from both sides
10 - 10 + 6y = 28 - 10
6y = 18
Divide both sides by by 6
y = 18/6
y = 3
Therefore
x = 10
y = 3
Multiples of 5 end in 5 or 0 this would mean
5,10,15,20,25,30,35,40 are all multiples of 5
Answer:
111101011 subscript 2
Step-by-step explanation:
491 / 2 = 245 , 1 remainder
245 / 2 = 122 , 1 remainder
122 / 2 = 61 , 0 remainder
61 / 2 = 30 , 1 remainder
30 / 2 = 15 , 0 remainder
15 / 2 = 7 , 1 remainder
7 / 2 = 3 , 1 remainder
3 / 2 = 1 , 1 remainder
1 / 2 = 0 , 1 remainder
Now, we're going to put the remainders together in reverse order to get the final answer.
111101011 ---> this is the final solution
See the image below for how you would write 111101011 subcript 2.