So we gots apolynomial equation that is 3rd degree and crosses x axis at x=-1, x=0 and x=2
the factors of a poly equation that passes through r1,r2,r3 is
(x-r1)(x-r2)(x-r3)
so
r1=-1
r2=0
r3=2
f(x)=(x-(-1))(x-0)(x-2)
f(x)=(x+1)(x)(x-2)
f(x)=x³-x²-2x
leading coefient is posiitve because 3rd degree equations that are postive go bottom left to top right
yah
actually that looks like the exact graph
both
f(x)=(x+1)(x)(x-2)
and
f(x)=x³-x²-2x
are correct
Answer:
Solution given:
f(x) =
x-2
let f(x)=y
y =
x-2
interchanging role of x and y
x=
y-2
x+2=
y
y=9(x+2)
y=9x+18
So
<u>F</u><u>-</u><u>¹</u><u>(</u><u>x</u><u>)</u><u>=</u><u>9</u><u>x</u><u>+</u><u>1</u><u>8</u>
<u>a</u><u>n</u><u>d</u>
<u>F</u><u>-</u><u>¹</u><u>(</u><u>-</u><u>1</u><u>)</u><u>=</u><u>9</u><u>*</u><u>-</u><u>1</u><u>+</u><u>1</u><u>8</u><u>=</u><u>-</u><u>9</u><u>+</u><u>1</u><u>8</u><u>=</u><u>9</u>
Answer:
6 i think
Step-by-step explanation:
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5
Answer: graph -3 on the y axis which is the line going straight up and down and then go up one, and then to the right one and graph that point. keep on going up one and to the right one.
Step-by-step explanation: