Answer:
x² - 30 + 5x
Step-by-step explanation:
(x + 5)(x − 5)
=x(x − 5)+5(x − 5)
=x² - 5 + 5x - 25
=x² - 30 + 5x
Answer:
![4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
Another complex expression, let's simplify it step by step...
We'll start by re-writing 256 as 4^4
![\sqrt[3]{256 x^{10} y^{7} } = \sqrt[3]{4^{4} x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Then we'll extract the 4 from the cubic root. We will then subtract 3 from the exponent (4) to get to a simple 4 inside, and a 4 outside.
![\sqrt[3]{4^{4} x^{10} y^{7} } = 4 \sqrt[3]{4 x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Now, we have x^10, so if we divide the exponent by the root factor, we get 10/3 = 3 1/3, which means we will extract x^9 that will become x^3 outside and x will remain inside.
![4 \sqrt[3]{4 x^{10} y^{7} } = 4x^{3} \sqrt[3]{4 x y^{7} }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D)
For the y's we have y^7 inside the cubic root, that means the true exponent is y^(7/3)... so we can extract y^2 and 1 y will remain inside.
![4x^{3} \sqrt[3]{4 x y^{7} } = 4x^{3} y^{2} \sqrt[3]{4 x y}](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D)
The answer is then:
![4x^{3} y^{2} \sqrt[3]{4 x y} = 4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
8/2 = 4
answer: it will take Carlos 4 hours to walk 8 miles
Answer:
If corresponding vertices on an image and a preimage are connected with line segments, the line segments are divided equally by the line of reflection. That is, the perpendicular distance from the line of reflection to either of the corresponding vertices is the same. Line is a perpendicular bisector of the connecting line segments.
Step-by-step explanation: