Answer:
Look at your answers for the last question in all four sets. Locate these four elements on the periodic table. Enter the name of the group that all four elements belong to. Watch your spelling! [Hint: If all four answers for the last question are not in the same group on the periodic table, redo your sets or contact your instructor.]
A screen reader friendly version of the periodic table (opens in a new window) is available, as well as a printable, black and white version (opens in a new window).
Step-by-step explanation:
Answer:
the codrect answer is 625
Answer:
A) A[p(t)] = 36πt²
B) 7234.56 square units
Step-by-step explanation:
<u>Given functions</u>:

<u>Part A</u>
To find the area of the circle of spilled paint as a function of time, substitute the function p(t) into the given function A(p):
![\begin{aligned}A(p) & = \pi p^2\\\\ \implies A[p(t)] & = \pi [p(t)]^2\\& = \pi (6t)^2\\& = \pi 6^2 t^2\\& = 36\pi t^2\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DA%28p%29%20%26%20%3D%20%5Cpi%20p%5E2%5C%5C%5C%5C%20%5Cimplies%20A%5Bp%28t%29%5D%20%26%20%3D%20%5Cpi%20%5Bp%28t%29%5D%5E2%5C%5C%26%20%3D%20%5Cpi%20%286t%29%5E2%5C%5C%26%20%3D%20%5Cpi%206%5E2%20t%5E2%5C%5C%26%20%3D%2036%5Cpi%20t%5E2%5Cend%7Baligned%7D)
<u>Part B</u>
Given
Substitute the given values into the equation for A[p(t)} found in part A:
![\begin{aligned}A[p(8)] & = 36\pi t^2\\& = 36 \cdot 3.14 \cdot 8^2\\& = 36 \cdot 3.14 \cdot 64\\& = 113.04 \cdot 64\\& = 7234.56\:\: \sf square\:units\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DA%5Bp%288%29%5D%20%26%20%3D%2036%5Cpi%20t%5E2%5C%5C%26%20%3D%2036%20%5Ccdot%203.14%20%5Ccdot%208%5E2%5C%5C%26%20%3D%2036%20%5Ccdot%203.14%20%5Ccdot%2064%5C%5C%26%20%3D%20113.04%20%5Ccdot%2064%5C%5C%26%20%3D%207234.56%5C%3A%5C%3A%20%5Csf%20square%5C%3Aunits%5Cend%7Baligned%7D)
Therefore, the area of spilled paint after 8 minutes if 7234.56 square units.
Answer:
x = 1, y = 2, z = -1
Step-by-step explanation:
2x + 4y = 10
2x = -4y + 10
x = -2y + 5
now sub -2y + 5 in for x, back into the other 2 equations
2x + 2y + 3z = 3 -3x + y + 2z = -3
2(-2y + 5) + 2y + 3z = 3 -3(-2y + 5) + y + 2z = -3
-4y + 10 + 2y + 3z = 3 6y - 15 + y + 2z = -3
-2y + 3z = 3 - 10 7y + 2z = - 3 + 15
-2y + 3z = - 7 7y + 2z = 12
-2y + 3z = -7....multiply by 2
7y + 2z = 12...multiply by -3
--------------------------
-4y + 6z = -14 (result of multiplying by 2)
-21y - 6z = -36 (result of multiplying by -3)
---------------------------add
-25y = - 50
y = -50/-25
y = 2 <===
2x + 4y = 10 2x + 2y + 3z = 3
2x + 4(2) = 10 2(1) + 2(2) + 3z = 3
2x + 8 = 10 2 + 4 + 3z = 3
2x = 10 - 8 6 + 3z = 3
2x = 2 3z = 3 - 6
x = 2/2 3z = -3
x = 1 <== z = -3/3
z = -1 <===