1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
9

Can someone please help me with these question? Thanks!

Mathematics
1 answer:
slega [8]3 years ago
4 0

Answer:

225%

Step-by-step explanation:

18/8=2.25 and that as a percentage is 225%

You might be interested in
What is 4 4/5 + 1 1/3?
Dafna1 [17]

Answer:

\frac{92}{15}

Step-by-step explanation:

change to improper

\frac{24}{5}  +  \frac{4}{3}

this gives us

\frac{92}{15}

final answer

plz mark as brainliest

7 0
3 years ago
Read 2 more answers
I'm trying to find the answer to this please help!
timofeeve [1]
Ion know bro you tryna help me
5 0
2 years ago
Which is the solution of set?
Anna [14]

Answer:

the answer is x >0 hope this helped

4 0
3 years ago
Find last year's salary if after a 5% pay raise , this year's salary is $39,375
ohaa [14]
Let x= last years salary. And 1.05 represents pay raise which 100% plus the 5%. 1.05(x)= 39375 you solve for x which gives you 37500
3 0
3 years ago
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y
\\
\\ \indent xdy = \left ( y^2 - y \right )dx
\\
\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}
\\
\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} 
\\
\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}
\\
\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} 
\\
\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B
\\
\\ \indent \Rightarrow (A+B)y - B = 0y + 1
\\
\\ \indent \Rightarrow \begin{cases}
 A + B = 0
& \text{(3)}\\-B = 1
 & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} 
\\
\\ \indent \indent \indent \indent = \ln (y-1) - \ln y
\\
\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1
\\
\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2
\\
\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x
\\
\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}
\\
\\ \indent  1 - \frac{1}{y} = Cx
\\
\\ \indent \frac{1}{y} = 1 - Cx
\\
\\ \indent \boxed{y = \frac{1}{1 - Cx}}
       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1



Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}
\\
\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 16 = \frac{1}{1 - C(16)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 16C}
\\
\\ \indent 16(1 - 16C) = 1
\\ \indent 16 - 256C = 1
\\ \indent - 256C = -15
\\ \indent \boxed{C = \frac{15}{256}}




By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}
\\
\\ \indent y = \frac{1}{1 - \frac{15}{256}x} 
\\ 
\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}
\\
\\
\\ \indent \boxed{y = \frac{256}{256 - 15x}}





This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} 
\\ 
\\ \indent 16 = \frac{1}{1 - C(4)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 4C} 
\\ 
\\ \indent 16(1 - 4C) = 1 
\\ \indent 16 - 64C = 1 
\\ \indent - 64C = -15 
\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Other questions:
  • A person is strolling along a moving walkway at a constant velocity of +1.00 m/s with respect to the walkway, which moves at a c
    12·1 answer
  • 4.51 times 3.4 equals
    11·1 answer
  • Rewrite the expression.
    10·1 answer
  • Find all solutions to the equation.
    9·1 answer
  • Janice listed the integers below on the chalkboard. Which of these integers has the greatest opposite? 1, –6, 11, –10, –8, 9, 5
    7·1 answer
  • Write an equation to represent the sum modeled in the following number line.
    12·1 answer
  • X+y=6 and 2x-y=3. The system of equations ...has no solution, has one solution, or is coincident
    12·1 answer
  • Which number can replace the variable to make these fractions equivalent?blank/7, 54/42
    5·1 answer
  • .....................................
    7·1 answer
  • Please someone help me. Im giving brainliest!
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!