Answer:
See explanation
Explanation:
Tyndall effect refers to the scattering of light in a solution. Tyndall effect occurs when the size of particles in the solution exceeds 1 nm in diameter. Such solutions are actually called false solutions.
In tincture of iodine, the size of particles in solution is less than 1 nm in diameter hence the solution does not exhibit Tyndall effect. Hence, tincture of iodine is a true solution.
Therefore, if the size of particles in solution exceeded 1nm in diameter, Tyndall effect is observed.
Answer:
The pair co,Ni is out of order in terms of atomic mass
Explanation:
For co,Ni
Atomic mass of Co = 58.9331 u
Atomic mass of Ni = 58.6934
For Li,be
Atomic mass of Li = 6.941 u
Atomic mass of be = 9.012182 u
For I,xe
Atomic mass of I = 126.90447 u
Atomic mass of Xe = 131.293 u
Hence, the pair co,Ni is out of order in terms of atomic mass
Answer:
this is difficult but simple to answer
Explanation:
all atoms move in 1 direction no more than 2
Answer:
9.96*10^21
Explanation:
Molar mass of K2O=29*2+16
= 74g per mol
number of moles in the sample= 1.224/ 74
=0.1654
Number of particles in 1 mole=6.0221409*10^23
Number of particles= 0.01654*6.0221409*10^23
=9.96*10^21
Answer:
The answer to your question is: 101.2 g of CO2
Explanation:
C = 27.6 g
O₂ = 86.5 g remained 12.9 g
O₂ that reacted = 86.5 - 12.9 = 73.6 g
C + O₂ ⇒ CO₂ The equation is balanced
27.6 73.6 ?
MW 12 32 44
Rule of three
12 g of C------------------ 44 g CO2
27.6 g C ------------------ x
x = 27.6(44)/12 = 101.2 g of CO2
32 g of O2 --------------- 44 g of CO2
73.6 g of O2 ------------ x
x = 73.6(44)/32 = 101.2 g of CO2