Answer: i would say s
Step-by-step explanation:
i hope this helps
Answer:
-14°
Step-by-step explanation:
So we start at -34°. It rose 7°, so the temperature becomes -27°. It rose again by 17° so now it's -10°. It fell by 4° so by Tuesday night, the temperature is -14°
Rolle's Theorem does not apply to the function because there are points on the interval (a,b) where f is not differentiable.
Given the function is
and the Rolle's Theorem does not apply to the function.
Rolle's theorem is used to determine if a function is continuous and also differentiable.
The condition for Rolle's theorem to be true as:
- f(a)=f(b)
- f(x) must be continuous in [a,b].
- f(x) must be differentiable in (a,b).
To apply the Rolle’s Theorem we need to have function that is differentiable on the given open interval.
If we look closely at the given function we can see that the first derivative of the given function is:
![\begin{aligned}f(x)&=\sqrt{(2-x^{\frac{2}{3}})^3}\\ f(x)&=(2-x^{\frac{2}{3}})^{\frac{3}{2}}\\ f'(x)&=\frac{3}{2}(2-x^{\frac{2}{3}})^{\frac{1}{2}}\cdot \frac{2}{3}\cdot (-x)^{\frac{1}{3}}\\ f'(x)&=\frac{-\sqrt{2-x^{\frac{2}{3}}}}{\sqrt[3]{x}}\end](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Df%28x%29%26%3D%5Csqrt%7B%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E3%7D%5C%5C%20f%28x%29%26%3D%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5C%5C%20f%27%28x%29%26%3D%5Cfrac%7B3%7D%7B2%7D%282-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ccdot%20%5Cfrac%7B2%7D%7B3%7D%5Ccdot%20%28-x%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%20f%27%28x%29%26%3D%5Cfrac%7B-%5Csqrt%7B2-x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cend)
From this point of view we can see that the given function is not defined for x=0.
Hence, all the assumptions are not satisfied we can reach a conclusion that we cannot apply the Rolle's Theorem.
Learn more about Rolle's Theorem from here brainly.com/question/12279222
#SPJ4
Answer:
44 degrees
Step-by-step explanation:
if BAC and DAE are complementary then their sum is equal to 90 degrees
90 - 36 = 44 degrees
Black Wall Street, former byname of the Greenwood neighbourhood in Tulsa, Oklahoma, where in the early 20th century African Americans had created a self-sufficient prosperous business district. ... Black businesses clustered on the strip of land that would become Greenwood in 1905, when African Americans acquired the land.