Answer:
a_n=-\frac{1}{4 a_{n-1}
Step-by-step explanation:
The recursive formula for the geometric sequence is given by:
a_n = a_{n-1} \cdot r
where,
r is the common ratio terms
-16, 4, -1, ...
This is a geometric sequence.
Here, and
Since,
ans so on .....
Substitute the given values we have;
⇒
Therefore, the recursive formula for the following geometric sequence is,
I think A would be correct
Don’t believe them it’s a scam.
Answer:
167/346 or 0.483
Step-by-step explanation:
From the question given above, the following data were obtained:
Number of Tails (T) = 167
Number of Heads (H) = 179
Probability of tail, P(T) =?
Next, we shall determine total outcome. This can be obtained as follow:
Number of Tails (T) = 167
Number of Heads (H) = 179
Total outcome (S) =?
S = T + H
S = 167 + 179
Total outcome (S) = 346
Finally, we shall determine the probability of tails. This can be obtained as follow:
Number of Tails (T) = 167
Total outcome (S) = 346
Probability of tail, P(T) =?
P(T) = T / S
P(T) = 167 / 346
P(T) = 0.483
Thus, the probability of tails is 167/346 or 0.483