Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A
Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
Pressure= hqg
H=depth
q=density
g=gravity
h=0.2
q=7
g=10
0.2*7*10= 14pa
FINAL ANSWER = 14pa
Answer:

Explanation:
In this question we have given

we have to find

We know that
optical path difference for bright fringe is given as
Here,
n is order of fringe
and optical path difference for dark fringe is given as
since the light with wavelength
produces its third-order bright fringe at the same place where the light with wavelength
produces its fourth dark fringe
it means
optical path difference for 3rd order bright fringe= optical path difference for forth order dark fringe
Therefore,
...............(1)
Put value of
in equation (1)


