1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
3 years ago
6

A nearby pond has 5 frogs, and the population doubles every year. The inequality 5(2)^t>75, where t is the number of years, m

odels when the population of frogs will be greater than 75.
Based on the inequality, when will the population of frogs in the pond be greater than 75?

t>4 years
t>7.5 years
t>2 years
t>1 year
Mathematics
1 answer:
My name is Ann [436]3 years ago
5 0

Answer:

4 and 7.5 years will be greater than 75

Step-by-step explanation:

4 year 10,20,40,80

7.5 years 10,20,40,80,160,320,640,960

You might be interested in
Really need help with this, thank you!!!!!
KengaRu [80]
Here your answer for your question

4 0
3 years ago
A scanner scanned 72 photos in 8 minutes. If it scans photos at a constant rate, it can scan
snow_lady [41]
It can scan 207 photos in 23.
4 0
3 years ago
Which of the following symbols correctly replaces the question mark (?) in the number comparison below? 0.700 ? 0.7    >  ≠  
Ivan
You could put 0.7 = 0.700
4 0
3 years ago
Read 2 more answers
Brainliest to most accurate answer and most points I can give to you.
Leto [7]

Answer: 2= c

and 1= idk

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%20%5Cdisplaystyle%5Crm%5Cint%20%5Climits_%7B0%7D%5E%7B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%7D%20%5
umka2103 [35]

Replace x\mapsto \tan^{-1}(x) :

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \int_0^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx

Split the integral at x = 1, and consider the latter one over [1, ∞) in which we replace x\mapsto\frac1x :

\displaystyle \int_1^\infty \frac{\sqrt[3]{x} \ln(x)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)}{\sqrt[3]{x} \left(1+\frac1{x^2}\right)} \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)}{\sqrt[3]{x} (1+x^2)} \, dx

Then the original integral is equivalent to

\displaystyle \int_0^1 \frac{\ln(x)}{1+x^2} \left(\sqrt[3]{x} - \frac1{\sqrt[3]{x}}\right) \, dx

Recall that for |x| < 1,

\displaystyle \sum_{n=0}^\infty x^n = \frac1{1-x}

so that we can expand the integrand, then interchange the sum and integral to get

\displaystyle \sum_{n=0}^\infty (-1)^n \int_0^1 \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \ln(x) \, dx

Integrate by parts, with

u = \ln(x) \implies du = \dfrac{dx}x

du = \left(x^{2n+\frac13} - x^{2n-\frac13}\right) \, dx \implies u = \dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac23}}{2n+\frac23}

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \int_0^1 \left(\dfrac{x^{2n+\frac43}}{2n+\frac43} - \dfrac{x^{2n+\frac13}}{2n-\frac13}\right) \, dx \\\\ = \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{\left(2n+\frac43\right)^2} - \frac1{\left(2n+\frac23\right)^2}\right) \\\\ = \frac94 \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

Recall the Fourier series we used in an earlier question [27217075]; if f(x)=\left(x-\frac12\right)^2 where 0 ≤ x ≤ 1 is a periodic function, then

\displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \sum_{n=1}^\infty \frac{\cos(2\pi n x)}{n^2}

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(2\pi(3n+1)x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(2\pi(3n+2)x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(2\pi(3n)x)}{(3n)^2}\right)

\implies \displaystyle f(x) = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{\cos(6\pi n x + 2\pi x)}{(3n+1)^2} + \sum_{n=0}^\infty \frac{\cos(6\pi n x + 4\pi x)}{(3n+2)^2} + \sum_{n=1}^\infty \frac{\cos(6\pi n x)}{(3n)^2}\right)

Evaluate f and its Fourier expansion at x = 1/2 :

\displaystyle 0 = \frac1{12} + \frac1{\pi^2} \left(\sum_{n=0}^\infty \frac{(-1)^{n+1}}{(3n+1)^2} + \sum_{n=0}^\infty \frac{(-1)^n}{(3n+2)^2} + \sum_{n=1}^\infty \frac{(-1)^n}{(3n)^2}\right)

\implies \displaystyle -\frac{\pi^2}{12} - \frac19 \underbrace{\sum_{n=1}^\infty \frac{(-1)^n}{n^2}}_{-\frac{\pi^2}{12}} = - \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right)

\implies \displaystyle \sum_{n=0}^\infty (-1)^{n+1} \left(\frac1{(3n+2)^2} - \frac1{(3n+1)^2}\right) = \frac{2\pi^2}{27}

So, we conclude that

\displaystyle \int_0^{\frac\pi2} \sqrt[3]{\tan(x)} \ln(\tan(x)) \, dx = \frac94 \times \frac{2\pi^2}{27} = \boxed{\frac{\pi^2}6}

3 0
3 years ago
Other questions:
  • I need help finding the answers
    15·1 answer
  • Cate has 10 dolls. Shelayna has 3 times as many dolls as Cate. How many more dolls does Shelayna have compared to Cate?
    15·1 answer
  • Two planes leave an airport traveling in opposite directions. One plane travels at 540 kilometers per hour and the other at 520
    12·2 answers
  • urgent help :(!! The sales tax on a $25,000 car is $1375. What is the sales tax rate? PLEASE SHOW HOW TO SOLVE IT AND HOW YOU GO
    14·1 answer
  • Kate has some dimes and quarters. If she has 21 coins worth a total of $3.15, how many of each type of coin does she have?
    14·1 answer
  • Find the median,mode, and range for each set of number
    14·2 answers
  • Solving a word problem involving rates and time conversion
    7·1 answer
  • What is 20b -2 + 34?
    8·1 answer
  • HELP ME PLS ASAP ILL GIVE BRAINLIEST
    6·1 answer
  • 44% of 231 is what?<br> this is percentage btw
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!