Answer
no
Step-by-step explanation:
yw
<span> 7x+2y=5;13x+14y=-1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
</span>System of Linear Equations entered :<span><span> [1] 7x + 2y = 5
</span><span> [2] 13x + 14y = -1
</span></span>Graphic Representation of the Equations :<span> 2y + 7x = 5 14y + 13x = -1
</span>Solve by Substitution :
// Solve equation [2] for the variable y
<span> [2] 14y = -13x - 1
[2] y = -13x/14 - 1/14</span>
// Plug this in for variable y in equation [1]
<span><span> [1] 7x + 2•(-13x/14-1/14) = 5
</span><span> [1] 36x/7 = 36/7
</span><span> [1] 36x = 36
</span></span>
// Solve equation [1] for the variable x
<span><span> [1] 36x = 36</span>
<span> [1] x = 1</span> </span>
// By now we know this much :
<span><span> x = 1</span>
<span> y = -13x/14-1/14</span></span>
<span>// Use the x value to solve for y
</span>
<span> y = -(13/14)(1)-1/14 = -1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
<span>
Processing ends successfully</span></span>
AB = CD = √8 ≈ 2.8 units
BC = AD = √2 ≈ 1.4 units
Area of the rectangle ABCD = 3.92 units²
Perimeter of the rectangle ABCD = 8.4 units
<h3>How to Find the Area and Perimeter of a Rectangle?</h3>
Given the coordinates of vertices of rectangle ABCD as:
- A(0,2)
- B(2,4)
- C(3,3)
- D(1,1)
To find the area and perimeter, use the distance formula to find the distance between A and B, and B and C.
Using the distance formula, we have the following:
AB = √[(2−0)² + (4−2)²]
AB = √[(2)² + (2)²]
AB = √8 ≈ 2.8 units
CD = √8 ≈ 2.8 units
BC = √[(2−3)² + (4−3)²]
BC = √[(−1)² + (1)²]
BC = √2 ≈ 1.4 units
AD = √2 ≈ 1.4 units
Area of the rectangle ABCD = (AB)(BC) = (2.8)(1.4) = 3.92 units²
Perimeter of the rectangle ABCD = 2(AB + BC) = 2(2.8 + 1.4) = 8.4 units
Learn more about the area and perimeter of rectangle on:
brainly.com/question/24571594
#SPJ1
Option C is the correct values of the relationship between the number of cakes the baker makes and the number of bags of flour uses.
Solution:
Option A: Ratio of cakes baked to bags of flour used

Here the ratios are not same.
So, this option is not true.
Option B: Ratio of cakes baked to bags of flour used

Here the ratios are same.
So, this option is true.
Option C: Ratio of cakes baked to bags of flour used

Here the ratios are not same.
So, this option is not true.
Option D: In this table cakes baked is 6 and the bags of flour is 18.
But a baker made 18 cakes using 6 bags of flour.
So, this option is not true.
Hence option C is the correct values of relationship between the number of cakes the baker makes and the number of bags of flour uses.