In fixation, the first stage of the Calvin cycle, light-independent reactions are initiated; CO2 is fixed from an inorganic to an organic molecule. In the second stage, ATP and NADPH are used to reduce 3-PGA into G3P; then ATP and NADPH are converted to ADP and NADPH+
hope this helps [:
Image 1.1 -
Stomata are little moth-like structures in leaves, that, when open, allow the exchange of gases between the plant and the exterior.
Answer:
B.
Image 1.2 -
Without the existance of stomata, the process of transpiration wouldn't be possible if there weren't structures thata allowed the exchange of gases.
Answer:
A.
Image 2 -
So, we can elminate plants because they can photosynthesise; bacteria because they are prokaryotes and can photosynthesise; archaea because they are prokaryotes; hat leaves us with animals and fungi because these cannot photosynthesise and are both eukaryotes.
But, we cannot skip information. It is also said that the organism found has a cell wall, and animals do not have cell walls.
Answer:
C.
Image 4 -
Option 1 = cilia
Option 2 = flagella
Option 3 = pseudopods
Option 4 = pili (they're a meant to attacht to surfaces only bacteria)
Image 5 -
Runner stems are those that grow horizontally, therefore the fourth image with the long horizontal stems.
Rhizome stems are underground stems that can form roots or shoots through their nodes. Therefore, the third image with white background (the one with 2 drawn plants).
Tuber stems are large underground (mostly) structures used as storages for the plant. Therefore, this corresponds to the first image (the one with the white background.
Bulb stems are short and "bulby" stems, whith thick, leaves. Therefore, the second image (the one with the grass background).
Hope it helped,
BioTeacher101
Answer: (B) Pre-zygotic; post-zygotic.
Explanation:
Prezygotic isolation occurs before fertilization of eggs. It occurs between the two sex gametes and deter sexual reproduction between different species.
However, individuals are considered to be diverge on the phylogeny tree and different species, when they cannot reproduce.
Mechanisms of prezygotic isolation include habitat isolation, gamete isolation, mechanical isolation, behavioral isolation, and mating seasons.
Whereas, postzygotic isolation prevents the formation of fertile offspring. This phenomenon leads to production of an hybrid offspring from different species and this is a form of speciation in nature.
Mechanisms of postzygotic isolation include hybrid inviability, hybrid breakdown, and hybrid sterility.