Answer: 28.27
Step-by-step explanation:
First, you can turn the diameter into a radius, giving you 3. Since the equation of an area in a circle is A=πr^2, you must square 3, giving you 9. Now you must multiply 9 with Pi, which is 3.14159265358, but just 3.14 for short. With that, you get about 28.27 as area.
Since they are complementary angles, then the sum of the measure of both angles is 90
So, M/_5 + m/_6 = 90
13+ X = 90
x=77
measure of angle 6 is 77
Answer: Let F(x, y, z) = x 2y 3 i+x 3y 2 j+ 2zk and C the curve parameterized by x(t) = cost, y(t) = sin t, and z(t) = t 2π
Step-by-step explanation:
Answer: Divide them by 2
159.5 * 2 Hoped it helped!
Complete Question
Evaluate the Fermi function for an energy kT above the Fermi energy. Find the temperature at which there is a 1% probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron.
Answer:
a
The Fermi function for the energy KT is 
b
The temperature is 
Step-by-step explanation:
From the question we are told that
The energy considered is 
Generally the Fermi function is mathematically represented as
![F(E_o) = \frac{1}{e^{\frac{[E_o - E_F]}{KT} } + 1 }](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_o%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%20%7D)
Here K is the Boltzmann constant with value 
is the Fermi energy
is the initial energy level which is mathematically represented as

So
![F(E_o) = \frac{1}{e^{\frac{[[E_F + KT] - E_F]}{KT} } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5BE_F%20%2B%20KT%5D%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%7D)
=> 
=> 
=> 
Generally the probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron is mathematically represented by the Fermi function as
![F(E_k) = \frac{1}{e^{\frac{[E_k - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_k%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
Here
is that energy level that is 0.5 ev above the Fermi energy 
=> ![F(E_k) = \frac{1}{e^{\frac{[[0.50 eV + E_F] - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5B0.50%20eV%20%2B%20E_F%5D%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![\frac{1}{e^{\frac{0.50 eV ]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![1 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} } + 0.01](https://tex.z-dn.net/?f=1%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%200.01)
=> ![0.99 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} }](https://tex.z-dn.net/?f=0.99%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D)
=> ![e^{\frac{0.50 eV ]}{KT_k} } = 99](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%20%3D%2099)
Taking natural log of both sides
=> 
=> 
Note eV is electron volt and the equivalence in Joule is 
So

=> 