__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)____φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)v__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)
Answer:
Step-by-step explanation:
One of the easier approaches to graphing a linear equation such as this one is to solve it for y, which gives us both the slope of the line and the y-intercept.
x-3y=-6 → -3y = -x - 6, or 3y = x + 6.
Dividing both sides by 3, we get y = (1/3)x + 2.
So the slope of this line is 1/3 and the y-intercept is 2.
Plot a dot at (0, 2). This is the y-intercept. Now move your pencil point from that dot 3 spaces to the right and then 1 space up. Draw a line thru these two dots. End.
Alternatively, you could use the intercept method. We have already found that the y-intercept is (0, 2). To find the x-intercept, let y = 0. Then x = -6, and the x-intercept is (-6, 0).
Plot both (0, 2) and (-6, 0) and draw a line thru these points. Same graph.
The circumference of a circle is calculated through the equation,
C = 2πr
where C is circumference and r is radius. For this item, I assume that 12 in is the radius such that,
C = 2π(12 in) = 24π
Thus, the circumference of the circle is 24π inches.
Answer:
i have no clue, sorry
Step-by-step explanation:
Given that the point (12,-5) which takes the form (x,y), This implies that:
opposite=-5
adjacent=12
thus using using Pythagorean theorem, the hypotenuse will be:
c^2=a^2+b^2
plugging the values we obtain:
c^2=(12)^2+(-5)^2
c^2=144+15
c^2=169
thus
c=13
but
cos θ=adjacent/ hypotenuse
therefore:
cos θ=12/13
Answer is option . D