1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
2 years ago
11

HELP ASAP ILL GIVE A BRAINLISET

Mathematics
1 answer:
galina1969 [7]2 years ago
8 0

Answer:

am an arts student my friend

Step-by-step explanation:

You might be interested in
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Each year, more than 2 million people in the United States become infected with bacteria that are resistant to antibiotics. In p
Bingel [31]

Answer:

A)

<u><em>Null hypothesis:H₀:-</em></u><em> There is no significant difference between in drug resistance between the two states</em>

<u><em>Alternative Hypothesis :H₁:</em></u>

<em>There is  significant difference between in drug resistance between the two states</em>

<em>B)</em>

<em>The calculated value Z =  2.7261 > 2.054 at 0.02 level of significance</em>

<em> Rejected H₀</em>

<em>There is a significant difference in drug resistance between the two states.</em>

C)

P - value = 0.0066

<em>P - value = 0.0066 < 0.02</em>

<em>D) </em>

<em>1) Reject H₀   </em>

<em>There is a significant difference in drug resistance between the two states.</em>

Step-by-step explanation:

<u><em>Step(i):-</em></u>

<em>Given first sample size n₁ = 174</em>

Suppose that, of 174 cases tested in a certain state, 11 were found to be drug-resistant.

<em>First sample proportion </em>

                    p_{1} = \frac{x_{1} }{n_{1} } = \frac{11}{174} = 0.0632

<em>Given second sample size n₂ = 375</em>

Given data  Suppose also that, of 375 cases tested in another state, 7 were found to be drug-resistant

<em>Second sample proportion</em>

<em>                  </em>p_{2} = \frac{x_{2} }{n_{2} } = \frac{7}{375} = 0.0186<em></em>

<u><em>Step(ii):-</em></u>

<u><em>Null hypothesis:H₀:-</em></u><em> There is no significant difference between in drug resistance between the two states</em>

<u><em>Alternative Hypothesis :H₁:</em></u>

<em>There is  significant difference between in drug resistance between the two states</em>

<em>Test statistic</em>

<em>           </em>Z = \frac{p_{1}-p_{2}  }{\sqrt{PQ(\frac{1}{n_{1} }+\frac{1}{n_{2} } ) } }<em></em>

<em>        Where </em>

<em>         </em>P = \frac{n_{1}p_{1} +n_{2} p_{2}  }{n_{1} +n_{2} }<em></em>

<em>        </em>P = \frac{174 (0.0632) + 375 (0.0186) }{174+375 } =  \frac{17.9718}{549} = 0.0327<em></em>

<em>       Q = 1 - P = 1 - 0.0327 = 0.9673</em>

<u><em>Step(iii):-</em></u>

<em></em>

<em>  Test statistic</em>

<em>           </em>Z = \frac{p_{1}-p_{2}  }{\sqrt{PQ(\frac{1}{n_{1} }+\frac{1}{n_{2} } ) } }<em></em>

<em>          </em>Z = \frac{0.0632-0.0186  }{\sqrt{0.0327 X 0.9673(\frac{1}{174 }+\frac{1}{375 } ) } }<em></em>

<em>       Z  =   2.7261</em>

<em>   </em>

<em>Level of significance = 0.02 or 0.98</em>

<em>The z-value = 2.054</em>

<em>The calculated value Z =  2.7261 > 2.054 at 0.02 level of significance</em>

<em>    Reject H₀   </em>

<em>There is a significant difference in drug resistance between the two states.</em>

 <u><em>P- value </em></u>

<em>P( Z > 2.7261) = 1 - P( Z < 2.726)</em>

<em>                         = 1 - ( 0.5 + A (2.72))</em>

<em>                         = 0.5 - 0.4967</em>

<em>                          = 0.0033</em>

we will use two tailed test

<em>2 P( Z > 2.7261)  = 2 × 0.0033</em>

<em>                            = 0.0066</em>

<em>P - value = 0.0066 < 0.02</em>

<em>  Reject H₀   </em>

<em>There is a significant difference in drug resistance between the two states.</em>

8 0
2 years ago
The daltons completed 30% of their 2140-mile trip the first day
Ugo [173]
To figure out how many miles the Daltons traveled the first day you times 2140 miles and 30 percent.
So 2140 x .30 = 642
They traveled 642 miles the first day.

To figure out how many miles they still have to travel you subtract your original miles (2140) from how many miles they have already traveled (642).
So 2140 - 642 = 1498
They have 1498 miles to still travel.
4 0
2 years ago
Read 2 more answers
What is the value of m?<br> m3 = 64
uranmaximum [27]

Answer

m=4

Step-by-step explanation:

3 0
3 years ago
lydia created a rectangle shape design that is 12 inches wide and 15 inches long she plans to make an enlargement of the design
Romashka [77]

Answer: 1200 inches long.

Step-by-step explanation:

the enlargement went from 1 inches wide to 80 inches wide.So which means it was being multiply by 80.

so you have to multiply 15 by 80 to find length of the enlargement or how long the enlargement of the design will be.

15 * 80=1200

6 0
3 years ago
Other questions:
  • Translate the product of a number and 4 increased by 1 is -3 into a equation
    7·1 answer
  • 5 17/20 write as a decimal
    9·2 answers
  • If each number is rounded to the nearest whole number, which statement is true?
    7·2 answers
  • What is the perimeter of a triangle with vertices located at (1,4), (2,7), (0,5)
    13·1 answer
  • Identify the hypothesis in the statement If it is monday, then the basketball team is playing
    11·1 answer
  • What percent is equivalent to .41
    5·1 answer
  • What is the smallest power of 10 that would exceed 999,999,999,991
    12·1 answer
  • Please hurry I will mark you brainliest
    15·1 answer
  • Zoologists estimate that a randomly selected baby giraffe has a 32% chance of surviving to adulthood. Assume this estimate is co
    7·1 answer
  • 3) A hat's price was increased by 25%. If the original price was $12.00. How
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!