Answer:
The value of x in terms of b is: ![\mathbf{x=-\frac{6}{2b}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%3D-%5Cfrac%7B6%7D%7B2b%7D%7D)
The value of x when b is 3 is: x = -1
Step-by-step explanation:
We are given the function: ![-2(bx-5)=16](https://tex.z-dn.net/?f=-2%28bx-5%29%3D16)
First we need to find
The value of x in terms of b
We need to find value of x
![-2(bx-5)=16](https://tex.z-dn.net/?f=-2%28bx-5%29%3D16)
Multiply -2 with terms inside the bracket
![-2bx+10=16](https://tex.z-dn.net/?f=-2bx%2B10%3D16)
Subtract 10 from both sides
![-2bx+10-10=16-10\\-2bx=6](https://tex.z-dn.net/?f=-2bx%2B10-10%3D16-10%5C%5C-2bx%3D6)
Divide both sides by -2b
![\frac{-2bx}{-2b}=\frac{6}{-2b}\\x=-\frac{6}{2b}](https://tex.z-dn.net/?f=%5Cfrac%7B-2bx%7D%7B-2b%7D%3D%5Cfrac%7B6%7D%7B-2b%7D%5C%5Cx%3D-%5Cfrac%7B6%7D%7B2b%7D)
So, The value of x in terms of b is: ![\mathbf{x=-\frac{6}{2b}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%3D-%5Cfrac%7B6%7D%7B2b%7D%7D)
The value of x when b is 3
We have the equation for the value of x in terms of b:
![\mathbf{x=-\frac{6}{2b}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bx%3D-%5Cfrac%7B6%7D%7B2b%7D%7D)
Put b = 3
![x=-\frac{6}{2(3)}\\x=-\frac{6}{6}\\x=-1](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7B6%7D%7B2%283%29%7D%5C%5Cx%3D-%5Cfrac%7B6%7D%7B6%7D%5C%5Cx%3D-1)
So, The value of x when b is 3 is: x = -1