Answer:
Total length of the first swing=64 m
Step-by-step explanation:
The total length of all four swings can be expressed as;
Total length of all 4 swings=Length of first swing+length of second swing+length of third swing+length of fourth swing
where;
Total length of all 4 swings=175 m
Length of first swing=x
Length of second swing=75% of length of first swing=(75/100)×x=0.75 x
Length of third swing=75% of length of second swing
Length of third swing=(75/100)×0.75 x=0.5625 x
Length of fourth swing=75% of length of third swing
Length of fourth swing=(75/100)×0.5625 x=0.421875 x
replacing;
Total length of all 4 swings
175=x+0.75 x+0.5625 x+0.421875 x
2.734375 x=175
x=175/2.734375
x=64
Total length of the first swing=x=64 m
Answer:
The area of the shaded region is 42.50 cm².
Step-by-step explanation:
Consider the figure below.
The radius of the circle is, <em>r</em> = 5 cm.
The sides of the rectangle are:
<em>l</em> = 11 cm
<em>b</em> = 11 cm.
Compute the area of the shaded region as follows:
Area of the shaded region = Area of rectangle - Area of circle
![=[l\times b]-[\pi r^{2}]\\\\=[11\times 11]-[3.14\times 5\times 5]\\\\=121-78.50\\\\=42.50](https://tex.z-dn.net/?f=%3D%5Bl%5Ctimes%20b%5D-%5B%5Cpi%20r%5E%7B2%7D%5D%5C%5C%5C%5C%3D%5B11%5Ctimes%2011%5D-%5B3.14%5Ctimes%205%5Ctimes%205%5D%5C%5C%5C%5C%3D121-78.50%5C%5C%5C%5C%3D42.50)
Thus, the area of the shaded region is 42.50 cm².
<h2>
Answer with explanation:</h2>
It is given that:
f: R → R is a continuous function such that:
∀ x,y ∈ R
Now, let us assume f(1)=k
Also,
( Since,
f(0)=f(0+0)
i.e.
f(0)=f(0)+f(0)
By using property (1)
Also,
f(0)=2f(0)
i.e.
2f(0)-f(0)=0
i.e.
f(0)=0 )
Also,
i.e.
f(2)=f(1)+f(1) ( By using property (1) )
i.e.
f(2)=2f(1)
i.e.
f(2)=2k
f(m)=f(1+1+1+...+1)
i.e.
f(m)=f(1)+f(1)+f(1)+.......+f(1) (m times)
i.e.
f(m)=mf(1)
i.e.
f(m)=mk
Now,

Also,
i.e. 
Then,

(
Now, as we know that:
Q is dense in R.
so Э x∈ Q' such that Э a seq
belonging to Q such that:
)
Now, we know that: Q'=R
This means that:
Э α ∈ R
such that Э sequence
such that:

and


( since
belongs to Q )
Let f is continuous at x=α
This means that:

This means that:

This means that:
f(x)=kx for every x∈ R
Answer:
The decomposition of the whale enriches the sediment.
Step-by-step explanation:
Answer:2
Step-by-step explanation: