Answer:
2x2-3x-5=0
Step-by-step explanation:
(2x2 - 3x) - 5 = 0
Answer:
h
=
55
Step-by-step explanation:
Solve for h by simplifying both sides of the equation, then isolating the variable.
Answer:
r = 8,9,10
Step-by-step explanation:
The given inequality is :
5r≤6r−8 ...(1)
We need to find the value of r.
Subtracting 5r to both sides of the inequality .
5r-5r≤6r-5r−8
0≤r−8
r ≥ 8
Hence, the values of r are 8,9,10.
Answer:
2y -10 > 13
Step-by-step explanation:
Answer:
A
The correct option is B
B
![t = 0.6093](https://tex.z-dn.net/?f=t%20%3D%20%200.6093)
C
![p-value = 0.27116](https://tex.z-dn.net/?f=p-value%20%20%3D%20%200.27116)
D
The correct option is D
Step-by-step explanation:
From the question we are told that
The sample size is ![n = 232](https://tex.z-dn.net/?f=n%20%20%3D%20%20232)
The number that developed nausea is X = 50
The population proportion is p = 0.20
The null hypothesis is ![H_o : p = 0.20](https://tex.z-dn.net/?f=H_o%20%3A%20p%20%20%3D%20%200.20)
The alternative hypothesis is ![H_a : p > 0.20](https://tex.z-dn.net/?f=H_a%20%3A%20%20p%20%3E%200.20)
Generally the sample proportion is mathematically represented as
![\r p = \frac{50}{232}](https://tex.z-dn.net/?f=%5Cr%20p%20%20%3D%20%20%5Cfrac%7B50%7D%7B232%7D)
![\r p = 0.216](https://tex.z-dn.net/?f=%5Cr%20p%20%20%3D%20%200.216)
Generally the test statistics is mathematically represented as
=> ![t = \frac{\r p - p }{ \sqrt{ \frac{p(1- p )}{n} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%5Cr%20p%20%20-%20%20p%20%7D%7B%20%5Csqrt%7B%20%5Cfrac%7Bp%281-%20p%20%29%7D%7Bn%7D%20%7D%20%7D)
=> ![t = \frac{ 0.216 - 0.20 }{ \sqrt{ \frac{ 0.20 (1- 0.20 )}{ 232} } }](https://tex.z-dn.net/?f=t%20%3D%20%20%5Cfrac%7B%200.216%20-%200.20%20%7D%7B%20%5Csqrt%7B%20%5Cfrac%7B%200.20%20%281-%200.20%20%29%7D%7B%20232%7D%20%7D%20%7D)
=> ![t = 0.6093](https://tex.z-dn.net/?f=t%20%3D%20%200.6093)
The p-value obtained from the z-table is
![p-value = P(Z > 0.6093) = 0.27116](https://tex.z-dn.net/?f=p-value%20%20%3D%20%20P%28Z%20%3E%20%200.6093%29%20%3D%20%200.27116)
Given that the
then we fail to reject the null hypothesis