Lookin for free points kinda like this one whatcha doin?
Solve for x.
First multiply everything in the parenthesis by 3.
12 + 12x = 12 + 12x
There is an infinite amount of solutions.
Hope this helps!
Let's say, the amount that each side was increased was "a"
so, it was 5 wide and 12 long, now it's 5+a wide and 12+a long
we know the area is 120, so whatever "a" is, we know that
(5+a)(12+a) = 120
so

use those factors, solve for "a"
Find where the expression
x
−
5
x
2
−
25
x
-
5
x
2
-
25
is undefined.
x
=
−
5
,
x
=
5
x
=
-
5
,
x
=
5
Since
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
−
∞
-
∞
as
x
x
→
→
−
5
-
5
from the left and
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
∞
∞
as
x
x
→
→
−
5
-
5
from the right, then
x
=
−
5
x
=
-
5
is a vertical asymptote.
x
=
−
5
x
=
-
5
Consider the rational function
R
(
x
)
=
a
x
n
b
x
m
R
(
x
)
=
a
x
n
b
x
m
where
n
n
is the degree of the numerator and
m
m
is the degree of the denominator.
1. If
n
<
m
n
<
m
, then the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
2. If
n
=
m
n
=
m
, then the horizontal asymptote is the line
y
=
a
b
y
=
a
b
.
3. If
n
>
m
n
>
m
, then there is no horizontal asymptote (there is an oblique asymptote).
Find
n
n
and
m
m
.
n
=
1
n
=
1
m
=
2
m
=
2
Since
n
<
m
n
<
m
, the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
y
=
0
y
=
0
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
This is the set of all asymptotes.
Vertical Asymptotes:
x
=
−
5
x
=
-
5
Horizontal Asymptotes:
y
=
0
y
=
0
No Oblique Asymptotes
1/4 per hamburger, 4 hamburgers=1 pound 20/4= B. 5 pounds