Answer:
The price that is two standard deviations above the mean price is 4.90.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 3.22 and a standard deviation of 0.84.
This means that 
Find the price that is two standard deviations above the mean price.
This is X when Z = 2. So




The price that is two standard deviations above the mean price is 4.90.