1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
14

A landscaping company estimates the price of a job,in dollars, using the expression 60 + 12nh, where n is the number of

Mathematics
1 answer:
Charra [1.4K]3 years ago
3 0
A is your correct answer.
You might be interested in
HELP IS NEED QUICKLY I WILL GIVE BRAINLIEST
Alex Ar [27]

Answer:

Well add the first numbers and get 10.34 you can add up to  at least 5 to 6 toppings.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find x. A. 21√2 B. 7 C. 21√3 over 2 D. 21√2 over 2
kkurt [141]

Answer:

D

Step-by-step explanation:

<em>for </em><em>you </em><em>to </em><em>find </em><em>x </em><em>you </em><em>first </em><em>have </em><em>to </em><em>find </em><em>the </em><em>adjacent</em><em> </em><em>of </em><em>the </em><em>4</em><em>5</em><em>°</em><em> </em><em>angle </em><em>you </em><em>can </em><em>do </em><em>that </em><em>by </em><em>using</em><em> </em><em>the </em><em>other </em><em>triangle.</em><em>u</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>the </em><em>sin </em><em>ratio</em>

<em>sin60=</em><em>opposite</em><em>/</em><em>hypotenuse</em>

<em>sin60=</em><em>a/</em><em>7</em><em>√</em><em>3</em>

<em>a</em><em>=</em><em>1</em><em>0</em><em>.</em><em>5</em>

<em>then </em><em>after </em><em>you </em><em>have </em><em>found</em><em> </em><em>the </em><em>adjacent</em><em> </em><em>you </em><em>can </em><em>use </em><em>the </em><em>cos </em><em>ratio</em>

<em>cos45=</em><em>adjacent/</em><em>hypotenuse</em>

<em>cos45=</em><em>1</em><em>0</em><em>.</em><em>5</em><em>/</em><em>x</em>

<em>cos45x/</em><em>cos45=</em><em>1</em><em>0</em><em>.</em><em>5</em><em>/</em><em>cos45</em>

<em>x=</em><em>1</em><em>4</em><em>.</em><em>8</em><em>4</em><em>9</em>

<em>which </em><em>is </em><em>the </em><em>same </em><em>as </em><em>2</em><em>1</em><em>√</em><em>2</em><em> </em><em>over </em><em>2</em>

<em>I </em><em>hope</em><em> this</em><em> helps</em>

5 0
3 years ago
Read 2 more answers
Consider the integral Integral from 0 to 1 e Superscript 6 x Baseline dx with nequals 25 . a. Find the trapezoid rule approximat
photoshop1234 [79]

Answer:

a.

With n = 25, \int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549

With n = 50, \int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594

b. \int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943

c.

The absolute error in the trapezoid rule is 0.08047

The absolute error in the Simpson's rule is 0.00008

Step-by-step explanation:

a. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 25 with the trapezoid rule you must:

The trapezoidal rule states that

\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 25.

Therefore,

\Delta{x}=\frac{1-0}{25}=\frac{1}{25}

We need to divide the interval [0,1] into n = 25 sub-intervals of length \Delta{x}=\frac{1}{25}, with the following endpoints:

a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579

...

2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701

f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549

  • To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 50 with the trapezoid rule you must:

We have that a = 0, b = 1, n = 50.

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594

b. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using 2n with the Simpson's rule you must:

The Simpson's rule states that

\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 50

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the Simpson's rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943

c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A-B|

The absolute error in the trapezoid rule is

The calculated value is

\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225

and our estimate is 67.1519320308594

Thus, the absolute error is given by

|67.0714655821225-67.1519320308594|=0.08047

The absolute error in the Simpson's rule is

|67.0714655821225-67.0715427161943|=0.00008

6 0
3 years ago
Enter a range if values for x.
Blizzard [7]

Answer:

See the attachment photo!

3 0
2 years ago
A base of a parallelogram is on the x-axis and the origin is located at the left endpoint of that base. Three consecutive vertic
nlexa [21]
We are given the description of a diagram where the base of a parallelogram lies on the x-axis with the left vertex on the origin. We are also given the three consecutive coordinates of the vertices which are
(h, j ), (0, 0), and (k, 0)
Based on the coordinates, the point (h, j) is j units from the y-axis
4 0
4 years ago
Read 2 more answers
Other questions:
  • Need help with this one
    6·2 answers
  • Prove the following statements: S Subset S Union T T Subset S Union T S Intersection T Subset S S Intersection T Subset T.
    6·1 answer
  • What is the answer...?
    10·1 answer
  • At the time of liquidation, Fairchild Company reported assets of $200,000, liabilities of $120,000, common stock of $90,000 and
    7·1 answer
  • Erwan accelerates his car at 3 km/h per second while overtake a lorry. If he drives with a speed of 90 km/h, calculate his speed
    5·1 answer
  • Y=f(x)= (1/2)^x <br> find f(x) when x= 3
    9·1 answer
  • Find the greatest common divisor of 198 and 36. <br><br>​
    15·1 answer
  • Emergency!!! Please I need help!!!!!!!
    7·1 answer
  • CAN U PLS ANSWER WILL GIVE BRAINLIEST
    6·1 answer
  • At an elevation of 1221.4 feet, Lake Mead will hold 28,945,000 acre-feet of water. Which number is the best estimate of this amo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!