1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
13

Consider the integral Integral from 0 to 1 e Superscript 6 x Baseline dx with nequals 25 . a. Find the trapezoid rule approximat

ions to the integral using n and 2n subintervals. b. Find the​ Simpson's rule approximation to the integral using 2n subintervals. c. Compute the absolute errors in the trapezoid rule and​ Simpson's rule with 2n subintervals.
Mathematics
1 answer:
photoshop1234 [79]3 years ago
6 0

Answer:

a.

With n = 25, \int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549

With n = 50, \int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594

b. \int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943

c.

The absolute error in the trapezoid rule is 0.08047

The absolute error in the Simpson's rule is 0.00008

Step-by-step explanation:

a. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 25 with the trapezoid rule you must:

The trapezoidal rule states that

\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 25.

Therefore,

\Delta{x}=\frac{1-0}{25}=\frac{1}{25}

We need to divide the interval [0,1] into n = 25 sub-intervals of length \Delta{x}=\frac{1}{25}, with the following endpoints:

a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579

...

2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701

f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549

  • To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 50 with the trapezoid rule you must:

We have that a = 0, b = 1, n = 50.

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594

b. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using 2n with the Simpson's rule you must:

The Simpson's rule states that

\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 50

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the Simpson's rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943

c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A-B|

The absolute error in the trapezoid rule is

The calculated value is

\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225

and our estimate is 67.1519320308594

Thus, the absolute error is given by

|67.0714655821225-67.1519320308594|=0.08047

The absolute error in the Simpson's rule is

|67.0714655821225-67.0715427161943|=0.00008

You might be interested in
Pls dont give just the answer, (you dont need to explain how to do it)
Alik [6]

Answer: 72

Step-by-step explanation: volume of a pyramid = v= lwh/3

v= 6*6*6/3

v = 216/3

v = 72

5 0
3 years ago
Read 2 more answers
Radius of a semi circle
Ivahew [28]
The area for semi circle is: (pi)(r^2)/2

A= 3.142 x (8.2)^2 / 2

A= 110.8 cm^2
8 0
2 years ago
Read 2 more answers
Why will the percent of change always be represented By a positive number
barxatty [35]
The percent of change will always be represented by a positive number because that change is an absolute value. Absolute values will always stay positive because the direction is ignored. It's not like a -1 or a -2, but it's a zero or a 3.
 Hope this helped you out! :D

7 0
3 years ago
Neeeeeed heeelp plz!!!
Blababa [14]
                             |
                             |__x_- 4___________              2x³/2x² =x
   2x² + 2x +3        | 2x³ - 6x² +7x +3
                            - (<span>2x³ +2x² +3x)
</span>                                      -8x² +4x  +3                -8x²/2x² = -4
                                    <span>-(-8x² -8x  -12)
</span>                                              12x +15

(x-4) + (12x +15)/(2x² + 2x +3) 
6 0
3 years ago
Classify each triangle by its sides.
Free_Kalibri [48]

Answer:

1

Step-by-step explanation:

None of the sides are equal. Isosceles means that 2 sides are equal. Equilateral means that all sides are equal.

3 0
3 years ago
Other questions:
  • Write the equation of the line in slope intercept form and standard form using the given information; m=9,(0,-7)
    11·1 answer
  • A service attendant is paid time and a 1/2 for working over 40 hours per week last week. The attendant work 47 hours and earned
    15·1 answer
  • The statue of liberty is 305 feet tall. A nearby building is 4/9 as tall. Find the height of the building.
    15·1 answer
  • A school student body is about 35% Asian .if their are 72 Asian students how many student are enrolled in the school?
    14·1 answer
  • Number correctly the five steps to be used in balancing a bank statement.
    5·1 answer
  • What is the domain of the function?
    11·1 answer
  • 5(x-24)+2x+3. What is the answer to this?
    12·2 answers
  • What is 0.00375 expressed in scientific notation
    14·2 answers
  • 6% of a length is 390m what is the original length
    10·1 answer
  • Find the intercepts and graph the equation. 7x +5y=12
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!