1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
13

Find x. A. 21√2 B. 7 C. 21√3 over 2 D. 21√2 over 2

Mathematics
2 answers:
kkurt [141]3 years ago
5 0

Answer:

D

Step-by-step explanation:

<em>for </em><em>you </em><em>to </em><em>find </em><em>x </em><em>you </em><em>first </em><em>have </em><em>to </em><em>find </em><em>the </em><em>adjacent</em><em> </em><em>of </em><em>the </em><em>4</em><em>5</em><em>°</em><em> </em><em>angle </em><em>you </em><em>can </em><em>do </em><em>that </em><em>by </em><em>using</em><em> </em><em>the </em><em>other </em><em>triangle.</em><em>u</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>the </em><em>sin </em><em>ratio</em>

<em>sin60=</em><em>opposite</em><em>/</em><em>hypotenuse</em>

<em>sin60=</em><em>a/</em><em>7</em><em>√</em><em>3</em>

<em>a</em><em>=</em><em>1</em><em>0</em><em>.</em><em>5</em>

<em>then </em><em>after </em><em>you </em><em>have </em><em>found</em><em> </em><em>the </em><em>adjacent</em><em> </em><em>you </em><em>can </em><em>use </em><em>the </em><em>cos </em><em>ratio</em>

<em>cos45=</em><em>adjacent/</em><em>hypotenuse</em>

<em>cos45=</em><em>1</em><em>0</em><em>.</em><em>5</em><em>/</em><em>x</em>

<em>cos45x/</em><em>cos45=</em><em>1</em><em>0</em><em>.</em><em>5</em><em>/</em><em>cos45</em>

<em>x=</em><em>1</em><em>4</em><em>.</em><em>8</em><em>4</em><em>9</em>

<em>which </em><em>is </em><em>the </em><em>same </em><em>as </em><em>2</em><em>1</em><em>√</em><em>2</em><em> </em><em>over </em><em>2</em>

<em>I </em><em>hope</em><em> this</em><em> helps</em>

Evgesh-ka [11]3 years ago
4 0

Answer:

D

Step-by-step explanation:

Using sine ratio in left right angled triangle to find the altitude a of the large triangle which is common to both right triangles and the exact value

sin60° = \frac{\sqrt{3} }{2} , then

sin60° = \frac{opposite}{hypotenuse} = \frac{a}{7\sqrt{3} } = \frac{\sqrt{3} }{2} ( cross- multiply )

2a = 21 ( divide both sides by 2 )

a = \frac{21}{2}

Using the cosine ratio in the right side triangle and the exact value

cos45° = \frac{1}{\sqrt{2} } , then

cos45° = \frac{adjacent}{hypotenuse} = \frac{a}{x} = \frac{1}{\sqrt{2} } ( cross- multiply )

x = \sqrt{2} a = \sqrt{2} × \frac{21}{2} = \frac{21\sqrt{2} }{2} → D

You might be interested in
Problems on a Test
patriot [66]
G = 4n is the correct equation to use. Eg 10 x 4 = 40, 18 x 4 = 72 and 21 x 4 = 84
6 0
3 years ago
Jade buys a blouse and a skirt for 3/6 of their original price. Jade pays a total of $31 for the two items. If the original pric
Damm [24]

Answer:

3/4 times 18= 13.5

31.5-13.5=18  

It cost 18 dollars for the skirt with a discount.

It cost 13.5 for the blouse as opposed to the original price of 18 dollars.

18(skirt)+13.5(blouse)=31.5

If you set up a proportion to find the original price of the skirt you will get the answer.  

18/x=75/100

75x=18 times 100

75x=1800

75x/75=1800/75

x=24  

The original price of the skirt is 24 dollars.

Step-by-step explanation:

4 0
3 years ago
Apply the method of undetermined coefficients to find a particular solution to the following system.wing system.
jarptica [38.1K]
  • y''-y'+y=\sin x

The corresponding homogeneous ODE has characteristic equation r^2-r+1=0 with roots at r=\dfrac{1\pm\sqrt3}2, thus admitting the characteristic solution

y_c=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x

For the particular solution, assume one of the form

y_p=a\sin x+b\cos x

{y_p}'=a\cos x-b\sin x

{y_p}''=-a\sin x-b\cos x

Substituting into the ODE gives

(-a\sin x-b\cos x)-(a\cos x-b\sin x)+(a\sin x+b\cos x)=\sin x

-b\cos x+a\sin x=\sin x

\implies a=1,b=0

Then the general solution to this ODE is

\boxed{y(x)=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x+\sin x}

  • y''-3y'+2y=e^x\sin x

\implies r^2-3r+2=(r-1)(r-2)=0\implies r=1,r=2

\implies y_c=C_1e^x+C_2e^{2x}

Assume a solution of the form

y_p=e^x(a\sin x+b\cos x)

{y_p}'=e^x((a+b)\cos x+(a-b)\sin x)

{y_p}''=2e^x(a\cos x-b\sin x)

Substituting into the ODE gives

2e^x(a\cos x-b\sin x)-3e^x((a+b)\cos x+(a-b)\sin x)+2e^x(a\sin x+b\cos x)=e^x\sin x

-e^x((a+b)\cos x+(a-b)\sin x)=e^x\sin x

\implies\begin{cases}-a-b=0\\-a+b=1\end{cases}\implies a=-\dfrac12,b=\dfrac12

so the solution is

\boxed{y(x)=C_1e^x+C_2e^{2x}-\dfrac{e^x}2(\sin x-\cos x)}

  • y''+y=x\cos(2x)

r^2+1=0\implies r=\pm i

\implies y_c=C_1\cos x+C_2\sin x

Assume a solution of the form

y_p=(ax+b)\cos(2x)+(cx+d)\sin(2x)

{y_p}''=-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x)

Substituting into the ODE gives

(-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x))+((ax+b)\cos(2x)+(cx+d)\sin(2x))=x\cos(2x)

-(3ax+3b-4c)\cos(2x)-(3cx+3d+4a)\sin(2x)=x\cos(2x)

\implies\begin{cases}-3a=1\\-3b+4c=0\\-3c=0\\-4a-3d=0\end{cases}\implies a=-\dfrac13,b=c=0,d=\dfrac49

so the solution is

\boxed{y(x)=C_1\cos x+C_2\sin x-\dfrac13x\cos(2x)+\dfrac49\sin(2x)}

7 0
3 years ago
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
Tom [10]

f(x)=x+21\Longrightarrow f(4)=4+21=\boxed{25}

3 0
3 years ago
Read 2 more answers
Wally had two more marbled than ashan and together they have 88 marbles how many marbles does ashan have
labwork [276]
Represent as
w=wally
a=ashan
so wally has 2 more marbles than ashan
w=2+a

together they have 88
w+a=88

since w=2+a, subsitute (2+a) for w in the w+a=88 equation
2+a+a=88
add like terms
2+2a=88
subtract 2 from both sides
2a=86
divide by 2
a=43

ashan has 43 marbles
5 0
3 years ago
Read 2 more answers
Other questions:
  • Whats 7589 divided by 4 to the 9th power and then multiply the answer and add 5 to that answer
    7·1 answer
  • I NEED MAJOR HELP PLEASE&lt; I WILL LITERALLY GIVE ALL MY POINTS AWAY TONIGHT!! MULTIPLE QUESTIONS/MULTIPLE SUBJECTS
    9·1 answer
  • The side length of a square is (8-√10) inches long. What's the area of the square.
    9·1 answer
  • Solve for x: negative 3 over 2, multiplied by x minus 9 equals negative 27
    14·1 answer
  • How many solutions does this equation have? x+4-6x=6-5x-2
    14·1 answer
  • 1,114,040 in word form
    9·1 answer
  • Please answer and explainp
    7·1 answer
  • Please help me with this question too. Please and Thank you!
    6·1 answer
  • The graph of y= x^2 +4x +3 is shown <br> work out a and b please
    9·2 answers
  • You and your friend go out to eat and end up spending $26.74 for your two meals. If you're going to tip 20%, what will your FINA
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!