Answer:
205 K (to 3 significant figures)
Explanation:
Assuming that 4 moles of the gas behaves like an ideal gas and obey the kinetic molecular theory.
Let's apply the ideal gas law, pV= nRT.
Here p denotes the pressure of the gas, V is for volume, n is the number of moles of the gas, R is the universal gas constant and T is the temperature.
Substitute the given information into the equation:
5.6 atm ×12 L= 4 mol ×R ×T
Since pressure is in atm and volume is in L, we can use R= 0.08206 L atm K⁻¹ mol⁻¹.
5.6 atm ×12 L= 4 mol ×0.08206 L atm K⁻¹ mol⁻¹ ×T
T= 67.2 ÷0.32824
T= 204.73 (5 s.f.)
T= 205 K (3 s.f.)
125 Kelvin turns into -146 C
There are TWO atoms in one molecule of hydrogen.
The amplitude of a wave is the distance between a point on one wave and the identical point on the next wave. The period and wavelength of a wave are inversely proportional.
2.998e^8 is how I would write it. If you want it with the least amount of decimals, use 3e^8