Answer:
94.1 %
Explanation:
We firstly determine the equation:
2H₂O + O₂ → 2H₂O₂
2 moles of water react to 1 mol of oxygen in order to produce 2 moles of oxygen peroxide.
We convert the mass of oxygen to moles:50 g . 1mol /32g = 1.56 mol
Certainly oxygen is the limiting reactant.
2 moles of water react to 1 mol of oxygen.
13 moles of water may react to 13/2 = 6.5 moles. (And we only have 1.56)
As we determine the limiting reactant we continue to the products:
1 mol of O₂ can produce 2 moles of H₂O₂
Then 1.56 moles of O₂ will produce (1.56 . 2) = 3.125 moles
We convert the moles to mass: 3.125 mol . 34 g/mol= 106.25 g
That's the 100% yield or it can be called theoretical yield.
Percent yield = (Yield produced / Theoretical yield) . 100
(100g / 106.25 g) . 100 = 94.1 %
An Endothermic change is a process in which there is absorption of energy.
-Condensation is the transformation from a gas to a liquid. So the water molecules releases energy while condensing, so condensation is exothermic (opposite of endothermic, it's the release of energy)
-Vaporization is the transformation from a liquid to a gas. When you heat water to evaporate it, you're giving energy to the water molecules. And when they absorb this energy, they transform to a gas. Which means that Vaporization is endothermic.
-Deposition is the transformation from gas directly to solid without passing by the liquid phase. Same as the condensation, but the water molecules release even more energy to directly become Solid. So deposition is exothermic.
-Freezing is the transformation from a liquid to a solid. During this phase, water molecules releases energy to its surrounding. So freezing is exothermic.
We can conclude that Vaporization is endothermic, because it's absorbing energy to transform from liquid to gas, while condensation, deposition and freezing are exothermic because they release energy to transform.
Hope this Helps! :)
The valence electrons in metals. Unlike those in covalently bonded substances
Answer:
The new volume is 7,606.96 Liter.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas in the balloon = 0.918 atm
= final pressure of gas in the balloon = 0.0012 atm
= initial volume of gas in the balloon = 
= final volume of gas in the balloon = ?
= initial temperature of gas in the balloon = 
= final temperature of gas in the balloon = 
Now put all the given values in the above equation, we get:



The new volume is 7,606.96 Liter.