Look at 3 on Variable B's axis, then go to the right until you reach the line.
After you reach the line, go all the way down and see what number you get to on Variable A's axis. You get 8, so that is your answer.
Answer:
15.87% of the total number of cardholder would be expected to be charging 27 or more in the study.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 25 charged purchases and a standard distribution of 2
This means that 
Proportion above 27
1 subtracted by the pvalue of Z when X = 27. So



has a pvalue of 0.8413
1 - 0.8413 = 0.1587
Out of the total number of cardholders about how many would you expect are charging 27 or more in the study?
0.1587*100% = 15.87%
15.87% of the total number of cardholder would be expected to be charging 27 or more in the study.
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2 \\\\\\\ [sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)] \\\\\\ 2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x) \\\\\\ \cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)} \\\\\\ \cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
Answer:

Step-by-step explanation:

also if ur brainly staff and seeing this
plz remove/delete my account asap tysm
Answer:
a) x+3x/2y or (3x+2xy)/2y
b) b^12
c) 4^3 or 64
Step-by-step explanation: