Answer:
A biologist is in the process of classifying a newly discovered fungus. The fungus is a decomposer and has saclike structures. To which group does the organism most likely belong? fungi that makes blue cheese ... These statements compare and contrast Ascomycota and Basidiomycota
The fungus is a decomposer and has saclike structures. To which group does the organism most likely belong? ... D.fungi that are autotrophic decomposers. See answers (2). Ask for details; Follow; Report ... a survival advantage because it reduces competition over resources between individual fish of the same species.
hope this helps
Answer: The mutation occurred in this sequence is deletion.
Answer:
According to Fick's law, the rate of diffusion of any substance across any barrier is<u> directly proportional to the surface area of the membrane or any layer exposed. and the concentration of the diffusing substance available, but the rate is inversely proportional to the diffusion distance available.</u>
<u />
Thus the rate at which oxygen will move across the phospholipid bilayer will depend on the concentration or amount per mole of the oxygen molecule hitting the phopholipid at a prticular time and how permeable the phospholipd layer is to oxygen molecules, but the rate of its movement across will be reduced as the distance between the phosphoslipid bilayer and the diffusing molecules increases.
Therefore, the concentration of oxygen should be maximised, the surface area of the phospholipid bilayer should also be maximized. the distances between the phopholipid and the vessel containing the diffusing oxygen molecules should be drastically reduced. With this Fick's law has been applied , and therefore maximum oxygen molecules can diffuse across.
Explanation:
Answer:
- Calcium binds to troponin C
- Troponin T moves tropomyosin and unblocks the binding sites
- Myosin heads join to the actin forming cross-bridges
- ATP turns into ADP and inorganic phosphate and releases energy
- The energy is used to impulse myofilaments slide producing a power stroke
- ADP is released and a new ATP joins the myosin heads and breaks the bindings to the actin filament
- ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, starting a new cycle
- Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.
Explanation:
In rest, the tropomyosin inhibits the attraction strengths between myosin and actin filaments. Contraction initiates when an action potential depolarizes the inner portion of the muscle fiber. Calcium channels activate in the T tubules membrane, releasing <u>calcium into the sarcolemma.</u> At this point, tropomyosin is obstructing binding sites for myosin on the thin filament. When calcium binds to troponin C, troponin T alters the tropomyosin position by moving it and unblocking the binding sites. Myosin heads join to the uncovered actin-binding points forming cross-bridges, and while doing so, ATP turns into ADP and inorganic phosphate, which is released. Myofilaments slide impulsed by chemical energy collected in myosin heads, producing a power stroke. The power stroke initiates when the myosin cross-bridge binds to actin. As they slide, ADP molecules are released. A new ATP links to myosin heads and breaks the bindings to the actin filament. Then ATP splits into ADP and phosphate, and the energy produced is accumulated in the myosin heads, which starts a new binding cycle to actin. Finally, Z-bands are pulled toward each other, shortening the sarcomere and the I-band, producing muscle fiber contraction.