Answer
12 (5 - 3)
Step-by-step explanation:
The greatest common factor is the largest number that will divide both numbers evenly. As an example, 6 is a common factor because it divides both 60 and 36. However, it is not the greatest common factor.
If I break 60 into it's prime factors, I would get 2 * 2 * 3 * 5.
If I break 36 into it's prime factors, I would get 2 * 2 * 3 * 3.
The two number have the factors, 2, 2, and 3 in common.
The greatest common factor is then: 2 * 2 * 3, or 12.
The expression can be factored as: 12 ( 5 - 3)
Answer:
The endpoints of the latus rectum are
and
.
Step-by-step explanation:
A parabola with vertex at point
and whose axis of symmetry is parallel to the y-axis is defined by the following formula:
(1)
Where:
- Independent variable.
- Dependent variable.
- Distance from vertex to the focus.
,
- Coordinates of the vertex.
The coordinates of the focus are represented by:
(2)
The <em>latus rectum</em> is a line segment parallel to the x-axis which contains the focus. If we know that
,
and
, then the latus rectum is between the following endpoints:
By (2):


By (1):



There are two solutions:




Hence, the endpoints of the latus rectum are
and
.
Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
Answer:
56.8
Step-by-step explanation:
4/5+56 =56.8
very sorry if this is wrong
Answer:
Step-by-step explanation:
SO you add this