Find the area of the parallelogram with vertices A(−1,2,3), B(0,4,6), C(1,1,2), and D(2,3,5).
cupoosta [38]
Answer:
5*sqrt3
Step-by-step explanation:
The vector AB= (0-(-1), 4-2,6-3) AB= (1,2,3)
The modul of AB is sqrt(1^2+2^2+3^2)= sqrt14
The vector AC is (1-(-1), 1-2, 2-3)= (2,-1,-1)
The modul of B is sqrt (2^2+(-1)^2+(-1)^2)= sqrt6
AB*AC= modul AB*modul AC*cosA
cosA=( 1*2+2*(-1)+3*(-1))/ sqrt14*sqrt6= -3/sqrt84=
sinB= sqrt (1- (-3/sqrt84)^2)= sqrt75/84= sqrt 25/28= 5/sqrt28
s= modul AB*modul AC*sinA= sqrt14*sqrt6* 5/ sqrt28= 5*sqrt3
Area=LW
<span>10x^2-29x-21=area
factor and those are the lengh and width
(2x-7)(5x+3)
perimiter=2(L+W)
P=2(2x-7+5x+3)
P=2(7x-4)
P=14x-8
answer is D
</span>
The answer could be 11.8L
If rounded 12L
Answer:
isosceles triangle
Step-by-step explanation: