Answer:
2
Step-by-step explanation:
1)
LHS = cot(a/2) - tan(a/2)
= (1 - tan^2(a/2))/tan(a/2)
= (2-sec^2(a/2))/tan(a/2)
= 2cot(a/2) - cosec(a/2)sec(a/2)
= 2(1+cos(a))/sin(a) - 1/(cos(a/2)sin(a/2))
= 2 (1+cos(a))/sin(a) - 2/sin(a)) (product to sums)
= 2[(1+cos(a) -1)/sin(a)]
=2cot a
= RHS
2.
LHS = cot(b/2) + tan(b/2)
= [1 + tan^2(b/2)]/tan(b/2)
= sec^2(b/2)/tan(b/2)
= 1/sin(b/2)cos(b/2)
using product to sums
= 2/sin(b)
= 2cosec(b)
= RHS
Answer:
165 cards left
Step-by-step explanation:
x + 221 = 386
-221 from both sides
x = 165
Answer: (6,0)
Step-by-step explanation: To find the x-intercept, we plug a 0 in for y.
So we have 2x - 3(0) = 12.
Simplifying from here, we have 2x = 12.
Now divide both sides by 2 and we get <em>x = 6</em>.
So our x-intercept is 6.
This means that our line crosses the x-axis 6
units to the right of the origin or at the point (6,0).