Answer:
Given f(x) and g(x), please find (fog)(X) and (gof)(x) f(x) = 2x g(x) = x+3
Given f(x) and g(x), please find (fog)(X) and (gof)(x)
f(x) = 2x g(x) = x+3
print Print document PDF list Cite
Quick Answer
(fog)(x) = 2x + 6
(gof)(x) = 2x + 3
Expert Answers
HALA718 eNotes educator| CERTIFIED EDUCATOR
f(x) = 2x
g(x) = x + 3
First let us find (fog)(x)
(fog)(x) = f(g(x)
= f(x+3)
= 2(x+3)
= 2x + 6
==> (fog)(x) = 2x + 6
Now let us find (gof)(x):
(gof)(x) = g(f(x)
= g(2x)
= 2x + 3
==> (gof)(x) = 2x + 3
Step-by-step explanation:
The answer is A. The data is a sample, so you can determine every answer with the word 'population' in it to be wrong.
hope it helps u to get your abswer and me to be ranked as brainliest:)))
Answer:
400 m^2.
Step-by-step explanation:
The largest area is obtained where the enclosure is a square.
I think that's the right answer because a square is a special form of a rectangle.
So the square would be 20 * 20 = 400 m^2.
Proof:
Let the sides of the rectangle be x and y m long
The area A = xy.
Also the perimeter 2x + 2y = 80
x + y = 40
y = 40 - x.
So substituting for y in A = xy:-
A = x(40 - x)
A = 40x - x^2
For maximum value of A we find the derivative and equate it to 0:
derivative A' = 40 - 2x = 0
2x = 40
x = 20.
So y = 40 - x
= 40 - 20
=20
x and y are the same value so x = y.
Therefore for maximum area the rectangle is a square.
Answer:
B
Step-by-step explanation: