1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
3 years ago
7

The second term of a Geometric progressionis -2, the 4th term is-18, find the 5thterm​

Mathematics
1 answer:
Oduvanchick [21]3 years ago
7 0

Answer:

-36

Step by step :

multiply each term

-1  x -2  = -2         -18 / -2 = 9 to get the third term

-2 x -9 =  -18

-2 x -18 = -36

-1, -2, -9, -18, -36

the first to fifth term  in all

ty.

You might be interested in
the rectangle shown has a perimeter of 56 cm and the given area. it's length is 8 more than three times it's width. write and so
stiv31 [10]

\qquad\qquad\huge\underline{{\sf Answer}}♨

Let's solve ~

Assume width of rectangle be " x ", length = 3×width + 8 = 3x + 8 ~

Now, Perimeter of rectangle is :

\qquad \sf  \dashrightarrow \:2(l + w)  = 56

\qquad \sf  \dashrightarrow \:2(3x + 8 + x)  = 56

\qquad \sf  \dashrightarrow \:2(4x + 8)  = 56

\qquad \sf  \dashrightarrow \:4x + 8  = 56 \div 2

\qquad \sf  \dashrightarrow \:4x + 8  = 28

\qquad \sf  \dashrightarrow \:4x  = 28 - 8

\qquad \sf  \dashrightarrow \:x = 20\div 4

\qquad \sf  \dashrightarrow \:x =5 \: cm

Hence, width = x = 5 cm

\qquad \sf  \dashrightarrow \:l = 3w + 8

\qquad \sf  \dashrightarrow \:l = 3(5)+ 8

\qquad \sf  \dashrightarrow \:l = 15+ 8

\qquad \sf  \dashrightarrow \:l =23 \:cm

And, length = 26 cm

4 0
3 years ago
A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the
mezya [45]

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring \frac{8}{3} feet.

Mass=m=\frac{W}{g}

Mass=m=\frac{16}{32}

g=32 ft/s^2

Mass,m=\frac{1}{2} Slug

By hook's law

w=kx

16=\frac{8}{3} k

k=\frac{16\times 3}{8}=6 lb/ft

f(t)=10cos(3t)

A damping force is numerically equal to 1/2 the instantaneous velocity

\beta=\frac{1}{2}

Equation of motion :

m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)

Using this equation

\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)

\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)

\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)

Auxillary equation

m^2+m+12=0

m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}

m=\frac{-1\pmi\sqrt{47}}{2}

m_1=\frac{-1+i\sqrt{47}}{2}

m_2=\frac{-1-i\sqrt{47}}{2}

Complementary function

e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})

To find the particular solution using undetermined coefficient method

x_p(t)=Acos(3t)+Bsin(3t)

x'_p(t)=-3Asin(3t)+3Bcos(3t)

x''_p(t)=-9Acos(3t)-9sin(3t)

This solution satisfied the equation therefore, substitute the values in the differential equation

-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)

(3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)

Comparing on both sides

3B+3A=20

3B-3A=0

Adding both equation then, we get

6B=20

B=\frac{20}{6}=\frac{10}{3}

Substitute the value of B in any equation

3A+10=20

3A=20-10=10

A=\frac{10}{3}

Particular solution, x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

Now, the general solution

x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

2=c_1+\frac{10}{3}

2-\frac{10}{3}=c_1

c_1=\frac{-4}{3}

x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)

Substitute x'(0)=0

0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2

\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0

\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}

c_2==-\frac{64}{3\sqrt{47}}

Substitute the values then we get

x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)

8 0
3 years ago
hello!! i would appreciate anyone’s help for this question and make sure you’re taking good care of ur self
crimeas [40]

Answer:

Is this a joke or wat if it is why

7 0
3 years ago
thomas buys a cardboard sheet that is 8 by 12 inches. let x be the side lenghth of each cut out. create an equation for the volu
nikitadnepr [17]
Hi there! 

Lets dive into the problem, starting with the equation for volume; length x width x height.

If it's 8 x 12 inches, That means the height is 8 and the length is 12. The side, or width, would be x.

The equation should be 8 times 12 times x, or (8)(12)(x).
8 0
4 years ago
Starting salaries of 90 college graduates who have taken a statistics course have a mean of $43,993 and a standard deviation of
Rufina [12.5K]

Answer: attached below

Step-by-step explanation:

5 0
4 years ago
Other questions:
  • What theorem or postulate can be used to justify that HIG=FIE
    15·2 answers
  • Quadrilateral ABCD is an isosceles trapezoid. If AB || CD, AB = m + 6, CD = 3m + 2, BC = 3m, and AD = 7m - 16, solve for m.
    11·2 answers
  • Which table has pairs of numbers all in the ratio 3 to 7. A, B, C D?
    6·1 answer
  • What is 3/16 as a decimal ?
    13·2 answers
  • Which postulate or theorem proves that these two triangles are congruent?
    7·2 answers
  • How many times can you round 72,586
    14·2 answers
  • (12y2<br> + 17y - 4) + (9y2<br> - 13y + 3) =
    13·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%5Csqrt%7By%20-%203%7D%20%20-%20%20%5Csqrt%7By%7D%20%20%3D%20%20-%203" id="TexFormula1" tit
    6·1 answer
  • Use y = mx + b to determine the equation of a line that passes through the point A(-1, 4) and is
    10·1 answer
  • Pls solve with working out. Ok thanks
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!