1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
3 years ago
7

Simplify 6^-6/6^-5 . rewrite the expression in the form 6^n

Mathematics
1 answer:
HACTEHA [7]3 years ago
6 0

Answer: =\frac{1}{6}\quad \left(\mathrm{Decimal:\quad }\:0.16666\dots \right)

Step-by-step explanation:

\frac{6^{-6}}{6^{-5}}

=6^{-6-\left(-5\right)}

=6^{-6+5}

=6^{-1}

=\frac{1}{6}

You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
What is the sum of a rational number and an irrational number
shepuryov [24]

Answer:

Irrational Number

Step-by-step explanation:

6 0
4 years ago
Read 2 more answers
What is the vertex of each function
cricket20 [7]

Answer:

Step-by-step explanation:

note :

f(x) =a(x-h)²+k

the vertex is : (h,k)

continu .........

7 0
3 years ago
6. Peggy Carter is selling tickets to see Captain America. On the first night she sold 12 adult tickets and 11 student tickets f
Nataliya [291]

Answer:

student ticket = $11

(adult ticket = $15)

Step-by-step explanation:

Let a = price of adult ticket

Let s = price of student ticket

Given:

  • On the first night she sold 12 adult tickets and 11 student tickets for $301 dollars

⇒ 12a + 11s = 301

Given:

  • On the second night she made $134 selling 6 adult tickets and 4 student tickets

⇒ 6a + 4s = 134

Multiply 6a + 4s + 134 by 2 then subtract from 12a + 11s = 301 to eliminate a:

⇒ (6a + 4s = 134) × 2:  12a + 8s = 268

  12a + 11s = 301

- (12a + 8s = 268)

--------------------------

            3s = 33

     

⇒ s = 33 ÷ 3 = 11

Substitute found value of s into one of the equations and solve for a:

⇒ 12a + 11(11) = 301

⇒ 12a + 121 = 301

⇒ 12a = 180

⇒ a = 15

Therefore, the price of an adult ticket is $15 and the price of a student ticket is $11

6 0
2 years ago
The regular tax to be paid with any purchase is 8%. How much tax did Anthony pay if he bought school supplies worth ₱5 000?​
Dvinal [7]

Answer:

400

Step-by-step explanation:

8% of 5000 is 400. Math:

5000 x 0.08 = 400

4 0
3 years ago
Other questions:
  • How do I find the missing angle ??
    6·1 answer
  • Three pens cost $2.70.what is the cost for one?
    10·2 answers
  • Solve for x. <br><br>a) 5√12<br><br>b) 12√5<br><br>c) 33<br><br>d) 6√5
    15·1 answer
  • Consider the equation:
    6·2 answers
  • I need help...............
    15·2 answers
  • Identifica el ángulo coterminal entre -360 ° y 360 ° para el ángulo -120 °.
    5·1 answer
  • I need help with this problem ASAP
    8·1 answer
  • X cuanto multiplico 15 para q m de 100?
    15·2 answers
  • 3. Ana's bedroom measures 8-feet by 12-feet. She
    14·1 answer
  • Jason states -8 is not an integer number. Is her correct
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!