1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
9

Consider the oriented path which is a straight line segment L running from (0,0) to (16, 16 (a) Calculate the line integral of t

he vector field F = (3x-y) i +j along L using the parameterization B (t) = (2,20, 0 Enter an exact answer. t 8. 256 48 , 48 256). (b) Consider the line integral of the vector field F = (3r-y) i +j along L using the parameterization C(1)-( ,16 3t 32 16$1532 . The line integral calculated in (a) is the line integral of the parameterization given in (b).
Mathematics
1 answer:
aalyn [17]3 years ago
6 0

This question is missing some parts. Here is the complete question.

Consider the oriented path which is a straight line segment L running from (0,0) to (16,16).

(a) Calculate the line inetrgal of the vector field F = (3x-y)i + xj along line L using the parameterization B(t) = (2t,2t), 0 ≤ t ≤ 8.

Enter an exact answer.

\int\limits_L {F} .\, dr =

(b) Consider the line integral of the vector field F = (3x-y)i + xj along L using the parameterization C(t) = (\frac{t^{2}-256}{48} ,\frac{t^{2}-256}{48} ), 16 ≤ t ≤ 32.

The line integral calculated in (a) is ____________ the line integral of the parameterization given in (b).

Answer: (a) \int\limits_L {F} .\, dr = 384

              (b) the same as

Step-by-step explanation: <u>Line</u> <u>Integral</u> is the integral of a function along a curve. It has many applications in Engineering and Physics.

It is calculated as the following:

\int\limits_C {F}. \, dr = \int\limits^a_b {F(r(t)) . r'(t)} \, dt

in which (.) is the dot product and r(t) is the given line.

In this question:

(a) F = (3x-y)i + xj

r(t) = B(t) = (2t,2t)

interval [0,8] are the limits of the integral

To calculate the line integral, first substitute the values of x and y for 2t and 2t, respectively or

F(B(t)) = 3(2t)-2ti + 2tj

F(B(t)) = 4ti + 2tj

Second, first derivative of B(t):

B'(t) = (2,2)

Then, dot product between F(B(t)) and B'(t):

F(B(t))·B'(t) = 4t(2) + 8t(2)

F(B(t))·B'(t) = 12t

Now, line integral will be:

\int\limits_C {F}. \, dr = \int\limits^8_0 {12t} \, dt

\int\limits_L {F}. \, dr = 6t^{2}

\int\limits_L {F.} \, dr = 6(8)^{2} - 0

\int\limits_L {F}. \, dr = 384

<u>Line integral for the conditions in (a) is 384</u>

<u />

(b) same function but parameterization is C(t) = (\frac{t^{2}-256}{48}, \frac{t^{2}-256}{48} ):

F(C(t)) = \frac{t^{2}-256}{16}-\frac{t^{2}-256}{48}i+ \frac{t^{2}-256}{48}j

F(C(t)) = \frac{2t^{2}-512}{48}i+ \frac{t^{2}-256}{48} j

C'(t) = (\frac{t}{24}, \frac{t}{24} )

\int\limits_L {F}. \, dr = \int\limits {(\frac{t}{24})(\frac{2t^{2}-512}{48})+ (\frac{t}{24} )(\frac{t^{2}-256}{48})  } \, dt

\int\limits_L {F} .\, dr = \int\limits^a_b {\frac{t^{3}}{384}- \frac{768t}{1152} } \, dt

\int\limits_L {F}. \, dr = \frac{t^{4}}{1536} - \frac{768t^{2}}{2304}

Limits are 16 and 32, so line integral will be:

\int\limits_L {F} \, dr = 384

<u>With the same function but different parameterization, line integral is the same.</u>

You might be interested in
A line and two points are guaranteed to be coplanar if
kicyunya [14]
The points lie on the line, I believe, since they're part of it. 
5 0
3 years ago
Given the parent functions f(x) = 5x − 1 and g(x) = 3^x − 9, what is g(x) − f(x)?
Gre4nikov [31]
Hi!

I believe this will answer your question  the parent function of f(x) = 5x − 1  is 5,  the parent function of  g(x) = 3^x − 9 is 3^x ln (3), and g(x) − f(x) is -5f+g*3^x ln (3)
8 0
3 years ago
What is 87.252 dividend by 2.2 I am not sure how to do the work
WARRIOR [948]

Answer:

39.66

Step-by-step explanation:

If the divisor is not a whole number, move decimal point to right to make it a whole number and move decimal point in dividend the same number of places.

Divide like you usually do

Put decimal point directly above decimal point in the dividend.

Check your answer.


7 0
3 years ago
Read 2 more answers
PLS HELP! 7x +10y= -23<br><br> 7x + 6y = - 39
mote1985 [20]
4y = -23 + 39
4y = 16
y = 4

Sub y = 4 into equation 2
7x + 6(4) = -39
7x + 24 = -39
7x = -39-24
7x = -63
x = -9

x = -9
y = 4
5 0
3 years ago
Ill GIVE BRAINELST AND EXTRA POINTS​
wolverine [178]

Answer:

I believe the answer is (-7.4) Not really great at math either

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • How much money will Gregory donate if the students read 325 books this summer? show your work he will donate 5$ for every book
    13·1 answer
  • How many ounces (oz) are 1 pound (lb)
    7·1 answer
  • How to expand and simplify -4x-10x
    11·1 answer
  • PLEASE HURRY!!! Need the answer ASAP!!!
    5·2 answers
  • Quadrilateral DUCK is inscribed in circle O.<br><br> What is the measure of ZK?<br><br> 73
    7·1 answer
  • Help me with this math problem plz
    8·1 answer
  • A figure is shown.<br> What is the measure of ZA, in degrees?
    13·2 answers
  • ILL GIVE BRAINLIEST TO WHOEVER ANSWERS
    15·2 answers
  • This is due today please help if you get it right you get brainliest if you get it!
    14·1 answer
  • Find the value of x. Only need 7 and 9 answered.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!