Answer:
640 m
Step-by-step explanation:
We can consider 4 seconds to be 1 time unit. Then 8 more seconds is 2 more time units, for a total of 3 time units.
The distance is proportional to the square of the number of time units. After 1 time unit, the distance is 1² × 80 m. Then after 3 time units, the distance will be 3² × 80 m = 720 m.
In the additional 2 time units (8 seconds), the ball dropped an additional
... (720 -80) m = 640 m
_____
<em>Alternate solution</em>
You can write the equation for the proportionality and find the constant that goes into it. If we use seconds (not 4-second intervals) as the time unit, then we can say ...
... d = kt²
Filling in the information related to the first 4 seconds, we have ...
... 80 = k(4)²
... 80/16 = k = 5
Then the distance equation becomes ...
... d = 5t²
After 12 seconds (the first 4 plus the next 8), the distance will be ...
... d = 5×12² = 5×144 = 720 . . . meters
That is, the ball dropped an additional 720 -80 = 640 meters in the 12 -4 = 8 seconds after the first data point.
Answer:
Step-by-step explanation:
9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2
36.08 = 8.8t
The distance is a positive because it shows the total distance traveled
36.08 = 8.8t
4.1=t
The answer is one thousand five hundred thirty eight