1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
3 years ago
12

PLEASE HELP I WILL GIVE BRAINLEST TO THE CORRECT ANSWER!​

Physics
1 answer:
Yakvenalex [24]3 years ago
8 0

Explanation:

the work a force does is measured in newton-meters (N-m), which use the symbol of J. Time (t) is expressed in Second. Power (P) is expressed in Watt (W).

You might be interested in
what happens if a voltmeter is connected in series with other components of the circuit (i.e , ammeter, cell, battery, resistor
Talja [164]

Answer:the voltmeter measures the potential difference of the circuit,. Voltmeter is a device used to measure potential difference.

Explanation:

8 0
3 years ago
Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let |a| = 22 lb and |b| = 16 lb. Rou
SVEN [57.7K]

Incomplete question as the angle between the force is not given I assumed angle of 55°.The complete question is here

Two forces, a vertical force of 22 lb and another of 16 lb, act on the same object. The angle between these forces is 55°. Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to one decimal places.)  

Answer:

Resultant Force=33.8 lb

Angle=67.2°

Explanation:

Given data

Fa=22 lb

Fb=16 lb

Θ=55⁰

To find

(i) Resultant Force F

(ii)Angle α

Solution

First we need to represent the forces in vector form

\sqrt{x} F_{1}=22j\\ F_{2}=u+v\\F_{2}=16sin(55)i+16cos(55)j\\F_{2}=16(0.82)i+16(0.5735)j\\F_{2}=13.12i+9.176j

Total Force

F=F_{1}+F_{2}\\ F_{2}=22j+13.12i+9.176j\\F_{2}=13.12i+31.176j

The Resultant Force is given as

|F|=\sqrt{x^{2} +y^{2} }\\|F|=\sqrt{(13.12)^{2} +(31.176)^{2} }\\ |F|=33.8lb

For(ii) angle

We can find the angle bu using tanα=y/x

So

tan\alpha =\frac{31.176}{13.12}\\ \alpha =tan^{-1} (\frac{31.176}{13.12})\\\alpha =67.2^{o}

7 0
4 years ago
All electromagnetic waves
ANEK [815]
Electromagnetic Waves:

Radio waves, television waves, and microwaves.

3 0
4 years ago
An 80.0 kg skier slides down a hill shaped as shown. Assume
umka21 [38]

The height above the ground from where the skier start is 11.5 m.

<h3>Conservation of energy</h3>

The height above the ground from where the skier start is determined by applying the principle of conservation of energy as shown below;

P.E = K.E

mgh = ¹/₂mv²

gh = ¹/₂v²

h = \frac{v^2}{2g} \\\\h = \frac{15^2}{2 \times 9.8} \\\\h = 11.5 \ m

Thus, the height above the ground from where the skier start is 11.5 m.

Learn more about conservation of energy here: brainly.com/question/166559

8 0
3 years ago
3. Maverick and Goose are flying a training mission in their F-14. They are
Elanso [62]

Answer:

A. The bomb will take <em>17.5 seconds </em>to hit the ground

B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it

Explanation:

Maverick and Goose are flying at an initial height of y_0=1500m, and their speed is v=688 m/s

When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement

The equation for the height y with respect to ground in a horizontal movement (no friction) is

y=y_0 - \frac{gt^2}{2}    [1]

With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released

The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time

The range (horizontal displacement) of the bomb x is

x = v.t     [2]

Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:

Setting y=0 and isolating t we get

t=\sqrt{\frac{2y_0}{g}}

Since we have y_0=1500m

t=\sqrt{\frac{2(1500)}{9.8}}

t=17.5 sec

Replacing in [2]

x = 688\ m/sec \ (17.5sec)

x = 12040\ m

A. The bomb will take 17.5 seconds to hit the ground

B. The bomb will land 12040 meters on the ground ahead from where they released it

6 0
3 years ago
Other questions:
  • Julie is cycling at a speed of 3.4 meters/second. If the combined mass of the bicycle and Julie is 30 kilograms, what is the kin
    15·2 answers
  • A sports car accelerates uniformly from rest to a speed of 87 mi/hr in 8s. Determine: a.The acceleration of the car
    13·1 answer
  • Does a can opener make work easier by increasing force, increasing distance, or changing direction?
    8·1 answer
  • In transverse waves, the medium moves perpendicular to the direction of energy transport? True or false?
    5·1 answer
  • Tyler throws a baseball, which accidentally breaks a window in his neighbor's house. Which of the following represents the actio
    12·2 answers
  • Why does fluid pressure exist?
    10·2 answers
  • An ant is crawling along a straight wire, which we shall call the x axis, from A to B to C to D
    5·1 answer
  • Sound waves have two parts. The part of the wave where the particles of the medium are spread apart is called the _____. rarefac
    7·2 answers
  • What are continuous, emission, and absorption spectra? How are they produced?
    15·1 answer
  • ___________ have the highest rates of star formation
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!