Answer:
he correct answer is V = ER
Explanation:
In this exercise they give us the electric field on the surface of the sphere and ask us about the electric potential, the two quantities are related
ΔV = ∫ E.ds
where E is the elective field and normal displacement vector.
Since E is radial in a spray the displacement vector is also radial, the dot product e reduces to the algebraic product.
ΔV = ∫ E ds
ΔV = E s
since s is in the direction of the radii its value on the surface of the spheres s = R
ΔV = E R
checking the correct answer is V = ER
The rock would be at a point 12 m from water at a time <u>4.8 s</u>.
Take the origin of the coordinate system at the top of the cliff. It is thrown upwards with a velocity u. When the rock is at a point 12 m from water, calculate the vertical displacement of the rock from the origin.

Use the equation of motion,

The rock falls under the acceleration due to gravity, directed down wards.
Substitute 18 m/s for u, -26 m for y and -9.8 m/s² for a=g.

Solve the quadratic equation for t.

Taking only the positive value,

After a time of <u>4.8 s</u> the rock would be at a distance of 12 m from water.
The initial angular speed of the fan will be 55.0 rad/sec. The angular speed of the fan decreases to 84.7 rad/s in 2.96 s.
<h3>What is angular acceleration?</h3>
Angular acceleration is defined as the pace of change of angular velocity with reference to time.
Given data;
Final angular speed,
Initial angular speed, 
Time period,t= 2.96 s
Angular deceleration = 47.2 rad/s²

Hence the initial angular speed of the fan will be 55.0 rad/sec.
To know more about angular acceleration refer to the link ;
brainly.com/question/408236
#SPJ