<span>y= 2x ^2 - 8x +9
</span>y = a(x - h)2 + k, where (h, k) is the vertex<span> of the parabola
</span>so
y= 2x ^2 - 8x + 9
y= 2x ^2 - 8x + 8 + 1
y = 2(x^2 - 4x - 4) + 1
y = 2(x - 2)^2 + 1 ....<---------<span>vertex form</span>
Use the slope-intercept form to find the slope and y-intercept. The slope-intercept form is y=mx+b y = m x + b , where m m is the slope and b b is the y-intercept. Find the values of m m and b b using the form y=mx+b y = m x + b . The slope of the line is the value of m m , and the y-intercept is the value of b .
Answer:
section covers somplifying algebraic expressions
Step-by-step explanation:
<h3>
(4)(2) = = 2/x⇒</h3>
The value of y = 40.
5x = 40
x = 8
180 = 40 + 40 + (2y + 20)
40 = y