3.5 : 5
7 : 10
14 : 20
17.5 : 25
At that rate, she can read 17.5 pages in 25 minuets.
Divide both 7 and 10 by 2, which gets 3.5 and 5
5 * 5 = 25
5 * 3.5 = 17.5
Therefore, in 25 minuets, she can read 17.5 pages.
Answer:
Graph A has infinite solutions, Graph B has one solution, and Graph C has no solutions
Step-by-step explanation:
<h2>
Hello!</h2>
The answer is: There is a total of 5.797 gallons pumped during the given period.
<h2>
Why?</h2>
To solve this equation, we need to integrate the function at the given period (from t=0 to t=4)
The given function is:
![D(t)=\frac{5t}{1+3t}](https://tex.z-dn.net/?f=D%28t%29%3D%5Cfrac%7B5t%7D%7B1%2B3t%7D)
So, the integral will be:
![\int\limits^4_0 {\frac{5t}{1+3t}} \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7B5t%7D%7B1%2B3t%7D%7D%20%5C%20dx)
So, integrating we have:
![\int\limits^4_0 {\frac{5t}{1+3t}} \ dt=5\int\limits^4_0 {\frac{t}{1+3t}} \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7B5t%7D%7B1%2B3t%7D%7D%20%5C%20dt%3D5%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bt%7D%7B1%2B3t%7D%7D%20%5C%20dx)
Performing a change of variable, we have:
![1+t=u\\du=1+3t=3dt\\x=\frac{u-1}{3}](https://tex.z-dn.net/?f=1%2Bt%3Du%5C%5Cdu%3D1%2B3t%3D3dt%5C%5Cx%3D%5Cfrac%7Bu-1%7D%7B3%7D)
Then, substituting, we have:
![\frac{5}{3}*\frac{1}{3}\int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du\\\\\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u}{u} -\frac{1}{u } \ du](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B3%7D%2A%5Cfrac%7B1%7D%7B3%7D%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%5C%5C%5C%5C%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu%7D%7Bu%7D%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%5C%20du)
![\frac{5}{9} \int\limits^4_0 {(\frac{u}{u} -\frac{1}{u } )\ du=\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u } )](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7Bu%7D%7Bu%7D%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%29)
![\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u })\ du=\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20-%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20%29%5C%20du-%20%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du)
![\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du=\frac{5}{9} (u-lnu)/[0,4]](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20%29%5C%20du-%20%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%28u-lnu%29%2F%5B0%2C4%5D)
Reverting the change of variable, we have:
![\frac{5}{9} (u-lnu)/[0,4]=\frac{5}{9}((1+3t)-ln(1+3t))/[0,4]](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%28u-lnu%29%2F%5B0%2C4%5D%3D%5Cfrac%7B5%7D%7B9%7D%28%281%2B3t%29-ln%281%2B3t%29%29%2F%5B0%2C4%5D)
Then, evaluating we have:
![\frac{5}{9}((1+3t)-ln(1+3t))[0,4]=(\frac{5}{9}((1+3(4)-ln(1+3(4)))-(\frac{5}{9}((1+3(0)-ln(1+3(0)))=\frac{5}{9}(10.435)-\frac{5}{9}(1)=5.797](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%28%281%2B3t%29-ln%281%2B3t%29%29%5B0%2C4%5D%3D%28%5Cfrac%7B5%7D%7B9%7D%28%281%2B3%284%29-ln%281%2B3%284%29%29%29-%28%5Cfrac%7B5%7D%7B9%7D%28%281%2B3%280%29-ln%281%2B3%280%29%29%29%3D%5Cfrac%7B5%7D%7B9%7D%2810.435%29-%5Cfrac%7B5%7D%7B9%7D%281%29%3D5.797)
So, there is a total of 5.797 gallons pumped during the given period.
Have a nice day!
Answer:
<h2>Reflection.</h2>
Step-by-step explanation:
The image attached shows a representation of the problem, there you can observe the congruence between triangles.
Also, using the images you can easily deduct the transformation we need to map one triangle onto the other one, we just need to reflect one triangle across and axis that pass through point M, such line acts like a mirror.
Therefore, the right answer is reflection.
<span>The incenter is equidistant from all three triangle sides.
So, PJ = PK = PL.
PJ = 4x -8
PL = x + 7
Therefore,
</span>4x -8 = <span>x + 7
3x = 15
x = 5
So, PJ = 12
PL = 12 and
PK = 12
</span>