Answer:
11 up , 11 left
Step-by-step explanation:
Given
to 
Required
Determine the translation rule
Considering the x coordinates.
From 17 to 6
6 is to the left of 17.
Using the translation rule:





<em>Hence: From 17 to 6 is 11 units left translation</em>
Considering the y coordinates.
From -9 to 2
2 is at the top -9.
Using the translation rule:





The negative value impies a upward translation.
Hence: From -9 to 2 is 11 units up translation
Answer:
7
x
−
5 y = − 110
Step-by-step explanation:
Using the normal distribution, it is found that 58.97% of students would be expected to score between 400 and 590.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
The mean and the standard deviation are given, respectively, by:

The proportion of students between 400 and 590 is the <u>p-value of Z when X = 590 subtracted by the p-value of Z when X = 400</u>, hence:
X = 590:


Z = 0.76
Z = 0.76 has a p-value of 0.7764.
X = 400:


Z = -0.89
Z = -0.89 has a p-value of 0.1867.
0.7764 - 0.1867 = 0.5897 = 58.97%.
58.97% of students would be expected to score between 400 and 590.
More can be learned about the normal distribution at brainly.com/question/27643290
#SPJ1
The complete question is
"What is the value of this expression when c= -4 and d= 10?
1/4 (c^3+d²)
A.2
B.9
C.21
D.41"
The value of this expression when c = -4 and d = 10 will be option B 9.
<h3>What is a simplification of an expression?</h3>
Usually, simplification involves proceeding with the pending operations in the expression.
Simplification usually involves making the expression simple and easy to use later.
The given expression is

Hence, the value of this expression when c = -4 and d = 10 will be option B 9.
Learn more about an expression here:
brainly.com/question/1249625
#SPJ1